975 resultados para Scheduling Systems
Resumo:
Nos dias de hoje, os sistemas de tempo real crescem em importância e complexidade. Mediante a passagem do ambiente uniprocessador para multiprocessador, o trabalho realizado no primeiro não é completamente aplicável no segundo, dado que o nível de complexidade difere, principalmente devido à existência de múltiplos processadores no sistema. Cedo percebeu-se, que a complexidade do problema não cresce linearmente com a adição destes. Na verdade, esta complexidade apresenta-se como uma barreira ao avanço científico nesta área que, para já, se mantém desconhecida, e isto testemunha-se, essencialmente no caso de escalonamento de tarefas. A passagem para este novo ambiente, quer se trate de sistemas de tempo real ou não, promete gerar a oportunidade de realizar trabalho que no primeiro caso nunca seria possível, criando assim, novas garantias de desempenho, menos gastos monetários e menores consumos de energia. Este último fator, apresentou-se desde cedo, como, talvez, a maior barreira de desenvolvimento de novos processadores na área uniprocessador, dado que, à medida que novos eram lançados para o mercado, ao mesmo tempo que ofereciam maior performance, foram levando ao conhecimento de um limite de geração de calor que obrigou ao surgimento da área multiprocessador. No futuro, espera-se que o número de processadores num determinado chip venha a aumentar, e como é óbvio, novas técnicas de exploração das suas inerentes vantagens têm de ser desenvolvidas, e a área relacionada com os algoritmos de escalonamento não é exceção. Ao longo dos anos, diferentes categorias de algoritmos multiprocessador para dar resposta a este problema têm vindo a ser desenvolvidos, destacando-se principalmente estes: globais, particionados e semi-particionados. A perspectiva global, supõe a existência de uma fila global que é acessível por todos os processadores disponíveis. Este fato torna disponível a migração de tarefas, isto é, é possível parar a execução de uma tarefa e resumir a sua execução num processador distinto. Num dado instante, num grupo de tarefas, m, as tarefas de maior prioridade são selecionadas para execução. Este tipo promete limites de utilização altos, a custo elevado de preempções/migrações de tarefas. Em contraste, os algoritmos particionados, colocam as tarefas em partições, e estas, são atribuídas a um dos processadores disponíveis, isto é, para cada processador, é atribuída uma partição. Por essa razão, a migração de tarefas não é possível, acabando por fazer com que o limite de utilização não seja tão alto quando comparado com o caso anterior, mas o número de preempções de tarefas decresce significativamente. O esquema semi-particionado, é uma resposta de caráter hibrido entre os casos anteriores, pois existem tarefas que são particionadas, para serem executadas exclusivamente por um grupo de processadores, e outras que são atribuídas a apenas um processador. Com isto, resulta uma solução que é capaz de distribuir o trabalho a ser realizado de uma forma mais eficiente e balanceada. Infelizmente, para todos estes casos, existe uma discrepância entre a teoria e a prática, pois acaba-se por se assumir conceitos que não são aplicáveis na vida real. Para dar resposta a este problema, é necessário implementar estes algoritmos de escalonamento em sistemas operativos reais e averiguar a sua aplicabilidade, para caso isso não aconteça, as alterações necessárias sejam feitas, quer a nível teórico quer a nível prá
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Mobile embedded systems, wireless communication, real-time systems, real-time scheduling, communication protocols, cooperation, reliability and fault-tolerance, middleware
Resumo:
Report for the scientific sojourn at the University of California at Berkeley between September 2007 to February 2008. The globalization combined with the success of containerization has brought about tremendous increases in the transportation of containers across the world. This leads to an increasing size of container ships which causes higher demands on seaport container terminals and their equipment. In this situation, the success of container terminals resides in a fast transhipment process with reduced costs. For these reasons it is necessary to optimize the terminal’s processes. There are three main logistic processes in a seaport container terminal: loading and unloading of containerships, storage, and reception/deliver of containers from/to the hinterland. Moreover there is an additional process that ensures the interconnection between previous logistic activities: the internal transport subsystem. The aim of this paper is to optimize the internal transport cycle in a marine container terminal managed by straddle carriers, one of the most used container transfer technologies. Three sub-systems are analyzed in detail: the landside transportation, the storage of containers in the yard, and the quayside transportation. The conflicts and decisions that arise from these three subsystems are analytically investigated, and optimization algorithms are proposed. Moreover, simulation has been applied to TCB (Barcelona Container Terminal) to test these algorithms and compare different straddle carrier’s operation strategies, such as single cycle versus double cycle, and different sizes of the handling equipment fleet. The simulation model is explained in detail and the main decision-making algorithms from the model are presented and formulated.
Resumo:
The public transportation is gaining importance every year basically duethe population growth, environmental policies and, route and streetcongestion. Too able an efficient management of all the resources relatedto public transportation, several techniques from different areas are beingapplied and several projects in Transportation Planning Systems, indifferent countries, are being developed. In this work, we present theGIST Planning Transportation Systems, a Portuguese project involving twouniversities and six public transportation companies. We describe indetail one of the most relevant modules of this project, the crew-scheduling module. The crew-scheduling module is based on the application of meta-heuristics, in particular GRASP, tabu search and geneticalgorithm to solve the bus-driver-scheduling problem. The metaheuristicshave been successfully incorporated in the GIST Planning TransportationSystems and are actually used by several companies.
Resumo:
The Drivers Scheduling Problem (DSP) consists of selecting a set of duties for vehicle drivers, for example buses, trains, plane or boat drivers or pilots, for the transportation of passengers or goods. This is a complex problem because it involves several constraints related to labour and company rules and can also present different evaluation criteria and objectives. Being able to develop an adequate model for this problem that can represent the real problem as close as possible is an important research area.The main objective of this research work is to present new mathematical models to the DSP problem that represent all the complexity of the drivers scheduling problem, and also demonstrate that the solutions of these models can be easily implemented in real situations. This issue has been recognized by several authors and as important problem in Public Transportation. The most well-known and general formulation for the DSP is a Set Partition/Set Covering Model (SPP/SCP). However, to a large extend these models simplify some of the specific business aspects and issues of real problems. This makes it difficult to use these models as automatic planning systems because the schedules obtained must be modified manually to be implemented in real situations. Based on extensive passenger transportation experience in bus companies in Portugal, we propose new alternative models to formulate the DSP problem. These models are also based on Set Partitioning/Covering Models; however, they take into account the bus operator issues and the perspective opinions and environment of the user.We follow the steps of the Operations Research Methodology which consist of: Identify the Problem; Understand the System; Formulate a Mathematical Model; Verify the Model; Select the Best Alternative; Present the Results of theAnalysis and Implement and Evaluate. All the processes are done with close participation and involvement of the final users from different transportation companies. The planner s opinion and main criticisms are used to improve the proposed model in a continuous enrichment process. The final objective is to have a model that can be incorporated into an information system to be used as an automatic tool to produce driver schedules. Therefore, the criteria for evaluating the models is the capacity to generate real and useful schedules that can be implemented without many manual adjustments or modifications. We have considered the following as measures of the quality of the model: simplicity, solution quality and applicability. We tested the alternative models with a set of real data obtained from several different transportation companies and analyzed the optimal schedules obtained with respect to the applicability of the solution to the real situation. To do this, the schedules were analyzed by the planners to determine their quality and applicability. The main result of this work is the proposition of new mathematical models for the DSP that better represent the realities of the passenger transportation operators and lead to better schedules that can be implemented directly in real situations.
Resumo:
This article presents an optimization methodology of batch production processes assembled by shared resources which rely on a mapping of state-events into time-events allowing in this way the straightforward use of a well consolidated scheduling policies developed for manufacturing systems. A technique to generate the timed Petri net representation from a continuous dynamic representation (Differential-Algebraic Equations systems (DAEs)) of the production system is presented together with the main characteristics of a Petri nets-based tool implemented for optimization purposes. This paper describes also how the implemented tool generates the coverability tree and how it can be pruned by a general purpose heuristic. An example of a distillation process with two shared batch resources is used to illustrate the optimization methodology proposed.
Resumo:
The object of this project is to schedule a ctitious European basketball competition with many teams situated a long distances. The schedule must be fair, feasible and economical, which means that the total distance trav- eled by every team must be the minimal possible. First, we de ne the sport competition terminology and study di erent competition systems, focusing on the NBA and the Euroleague systems. Then we de ne concepts of graph theory and spherical distance that will be needed. Next we propose a com- petition system, explaining where will be allocated the teams and how will be the scheduling. Then there is a description of the programs that have been implemented, and, nally, the complete schedule is displayed, and some possible improvements are mentioned.
Resumo:
The present study was done with two different servo-systems. In the first system, a servo-hydraulic system was identified and then controlled by a fuzzy gainscheduling controller. The second servo-system, an electro-magnetic linear motor in suppressing the mechanical vibration and position tracking of a reference model are studied by using a neural network and an adaptive backstepping controller respectively. Followings are some descriptions of research methods. Electro Hydraulic Servo Systems (EHSS) are commonly used in industry. These kinds of systems are nonlinearin nature and their dynamic equations have several unknown parameters.System identification is a prerequisite to analysis of a dynamic system. One of the most promising novel evolutionary algorithms is the Differential Evolution (DE) for solving global optimization problems. In the study, the DE algorithm is proposed for handling nonlinear constraint functionswith boundary limits of variables to find the best parameters of a servo-hydraulic system with flexible load. The DE guarantees fast speed convergence and accurate solutions regardless the initial conditions of parameters. The control of hydraulic servo-systems has been the focus ofintense research over the past decades. These kinds of systems are nonlinear in nature and generally difficult to control. Since changing system parameters using the same gains will cause overshoot or even loss of system stability. The highly non-linear behaviour of these devices makes them ideal subjects for applying different types of sophisticated controllers. The study is concerned with a second order model reference to positioning control of a flexible load servo-hydraulic system using fuzzy gainscheduling. In the present research, to compensate the lack of dampingin a hydraulic system, an acceleration feedback was used. To compare the results, a pcontroller with feed-forward acceleration and different gains in extension and retraction is used. The design procedure for the controller and experimental results are discussed. The results suggest that using the fuzzy gain-scheduling controller decrease the error of position reference tracking. The second part of research was done on a PermanentMagnet Linear Synchronous Motor (PMLSM). In this study, a recurrent neural network compensator for suppressing mechanical vibration in PMLSM with a flexible load is studied. The linear motor is controlled by a conventional PI velocity controller, and the vibration of the flexible mechanism is suppressed by using a hybrid recurrent neural network. The differential evolution strategy and Kalman filter method are used to avoid the local minimum problem, and estimate the states of system respectively. The proposed control method is firstly designed by using non-linear simulation model built in Matlab Simulink and then implemented in practical test rig. The proposed method works satisfactorily and suppresses the vibration successfully. In the last part of research, a nonlinear load control method is developed and implemented for a PMLSM with a flexible load. The purpose of the controller is to track a flexible load to the desired position reference as fast as possible and without awkward oscillation. The control method is based on an adaptive backstepping algorithm whose stability is ensured by the Lyapunov stability theorem. The states of the system needed in the controller are estimated by using the Kalman filter. The proposed controller is implemented and tested in a linear motor test drive and responses are presented.
Researching Manufacturing Planning and Control system and Master Scheduling in a manufacturing firm.
Resumo:
The objective of this thesis is to research Manufacturing Planning and Control (MPC) system and Master Scheduling (MS) in a manufacturing firm. The study is conducted at Ensto Finland Corporation, which operates on a field of electrical systems and supplies. The paper consists of theoretical and empirical parts. The empirical part is based on weekly operating at Ensto and includes inter-firm material analysis, learning and meetings. Master Scheduling is an important module of an MPC system, since it is beneficial on transforming strategic production plans based on demand forecasting into operational schedules. Furthermore, capacity planning tools can remarkably contribute to production planning: by Rough-Cut Capacity Planning (RCCP) tool, a MS plan can be critically analyzed in terms of available key resources in real manufacturing environment. Currently, there are remarkable inefficiencies when it comes to Ensto’s practices: the system is not able to take into consideration seasonal demand and react on market changes on time; This can cause significant lost sales. However, these inefficiencies could be eliminated through the appropriate utilization of MS and RCCP tools. To utilize MS and RCCP tools in Ensto’s production environment, further testing in real production environment is required. Moreover, data accuracy, appropriate commitment to adapting and learning the new tools, and continuous developing of functions closely related to MS, such as sales forecasting, need to be ensured.
Resumo:
Formal methods provide a means of reasoning about computer programs in order to prove correctness criteria. One subtype of formal methods is based on the weakest precondition predicate transformer semantics and uses guarded commands as the basic modelling construct. Examples of such formalisms are Action Systems and Event-B. Guarded commands can intuitively be understood as actions that may be triggered when an associated guard condition holds. Guarded commands whose guards hold are nondeterministically chosen for execution, but no further control flow is present by default. Such a modelling approach is convenient for proving correctness, and the Refinement Calculus allows for a stepwise development method. It also has a parallel interpretation facilitating development of concurrent software, and it is suitable for describing event-driven scenarios. However, for many application areas, the execution paradigm traditionally used comprises more explicit control flow, which constitutes an obstacle for using the above mentioned formal methods. In this thesis, we study how guarded command based modelling approaches can be conveniently and efficiently scheduled in different scenarios. We first focus on the modelling of trust for transactions in a social networking setting. Due to the event-based nature of the scenario, the use of guarded commands turns out to be relatively straightforward. We continue by studying modelling of concurrent software, with particular focus on compute-intensive scenarios. We go from theoretical considerations to the feasibility of implementation by evaluating the performance and scalability of executing a case study model in parallel using automatic scheduling performed by a dedicated scheduler. Finally, we propose a more explicit and non-centralised approach in which the flow of each task is controlled by a schedule of its own. The schedules are expressed in a dedicated scheduling language, and patterns assist the developer in proving correctness of the scheduled model with respect to the original one.
Resumo:
The objective of this project was to introduce a new software product to pulp industry, a new market for case company. An optimization based scheduling tool has been developed to allow pulp operations to better control their production processes and improve both production efficiency and stability. Both the work here and earlier research indicates that there is a potential for savings around 1-5%. All the supporting data is available today coming from distributed control systems, data historians and other existing sources. The pulp mill model together with the scheduler, allows what-if analyses of the impacts and timely feasibility of various external actions such as planned maintenance of any particular mill operation. The visibility gained from the model proves also to be a real benefit. The aim is to satisfy demand and gain extra profit, while achieving the required customer service level. Research effort has been put both in understanding the minimum features needed to satisfy the scheduling requirements in the industry and the overall existence of the market. A qualitative study was constructed to both identify competitive situation and the requirements vs. gaps on the market. It becomes clear that there is no such system on the marketplace today and also that there is room to improve target market overall process efficiency through such planning tool. This thesis also provides better overall understanding of the different processes in this particular industry for the case company.
Resumo:
One major component of power system operation is generation scheduling. The objective of the work is to develop efficient control strategies to the power scheduling problems through Reinforcement Learning approaches. The three important active power scheduling problems are Unit Commitment, Economic Dispatch and Automatic Generation Control. Numerical solution methods proposed for solution of power scheduling are insufficient in handling large and complex systems. Soft Computing methods like Simulated Annealing, Evolutionary Programming etc., are efficient in handling complex cost functions, but find limitation in handling stochastic data existing in a practical system. Also the learning steps are to be repeated for each load demand which increases the computation time.Reinforcement Learning (RL) is a method of learning through interactions with environment. The main advantage of this approach is it does not require a precise mathematical formulation. It can learn either by interacting with the environment or interacting with a simulation model. Several optimization and control problems have been solved through Reinforcement Learning approach. The application of Reinforcement Learning in the field of Power system has been a few. The objective is to introduce and extend Reinforcement Learning approaches for the active power scheduling problems in an implementable manner. The main objectives can be enumerated as:(i) Evolve Reinforcement Learning based solutions to the Unit Commitment Problem.(ii) Find suitable solution strategies through Reinforcement Learning approach for Economic Dispatch. (iii) Extend the Reinforcement Learning solution to Automatic Generation Control with a different perspective. (iv) Check the suitability of the scheduling solutions to one of the existing power systems.First part of the thesis is concerned with the Reinforcement Learning approach to Unit Commitment problem. Unit Commitment Problem is formulated as a multi stage decision process. Q learning solution is developed to obtain the optimwn commitment schedule. Method of state aggregation is used to formulate an efficient solution considering the minimwn up time I down time constraints. The performance of the algorithms are evaluated for different systems and compared with other stochastic methods like Genetic Algorithm.Second stage of the work is concerned with solving Economic Dispatch problem. A simple and straight forward decision making strategy is first proposed in the Learning Automata algorithm. Then to solve the scheduling task of systems with large number of generating units, the problem is formulated as a multi stage decision making task. The solution obtained is extended in order to incorporate the transmission losses in the system. To make the Reinforcement Learning solution more efficient and to handle continuous state space, a fimction approximation strategy is proposed. The performance of the developed algorithms are tested for several standard test cases. Proposed method is compared with other recent methods like Partition Approach Algorithm, Simulated Annealing etc.As the final step of implementing the active power control loops in power system, Automatic Generation Control is also taken into consideration.Reinforcement Learning has already been applied to solve Automatic Generation Control loop. The RL solution is extended to take up the approach of common frequency for all the interconnected areas, more similar to practical systems. Performance of the RL controller is also compared with that of the conventional integral controller.In order to prove the suitability of the proposed methods to practical systems, second plant ofNeyveli Thennal Power Station (NTPS IT) is taken for case study. The perfonnance of the Reinforcement Learning solution is found to be better than the other existing methods, which provide the promising step towards RL based control schemes for practical power industry.Reinforcement Learning is applied to solve the scheduling problems in the power industry and found to give satisfactory perfonnance. Proposed solution provides a scope for getting more profit as the economic schedule is obtained instantaneously. Since Reinforcement Learning method can take the stochastic cost data obtained time to time from a plant, it gives an implementable method. As a further step, with suitable methods to interface with on line data, economic scheduling can be achieved instantaneously in a generation control center. Also power scheduling of systems with different sources such as hydro, thermal etc. can be looked into and Reinforcement Learning solutions can be achieved.
Optimal Methodology for Synchronized Scheduling of Parallel Station Assembly with Air Transportation
Resumo:
We present an optimal methodology for synchronized scheduling of production assembly with air transportation to achieve accurate delivery with minimized cost in consumer electronics supply chain (CESC). This problem was motivated by a major PC manufacturer in consumer electronics industry, where it is required to schedule the delivery requirements to meet the customer needs in different parts of South East Asia. The overall problem is decomposed into two sub-problems which consist of an air transportation allocation problem and an assembly scheduling problem. The air transportation allocation problem is formulated as a Linear Programming Problem with earliness tardiness penalties for job orders. For the assembly scheduling problem, it is basically required to sequence the job orders on the assembly stations to minimize their waiting times before they are shipped by flights to their destinations. Hence the second sub-problem is modelled as a scheduling problem with earliness penalties. The earliness penalties are assumed to be independent of the job orders.
Resumo:
We address the problem of jointly determining shipment planning and scheduling decisions with the presence of multiple shipment modes. We consider long lead time, less expensive sea shipment mode, and short lead time but expensive air shipment modes. Existing research on multiple shipment modes largely address the short term scheduling decisions only. Motivated by an industrial problem where planning decisions are independent of the scheduling decisions, we investigate the benefits of integrating the two sets of decisions. We develop sequence of mathematical models to address the planning and scheduling decisions. Preliminary computational results indicate improved performance of the integrated approach over some of the existing policies used in real-life situations.