851 resultados para Scattered Spaces


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for the explicit determination of the polar decomposition (and the related problem of finding tensor square roots) when the underlying vector space dimension n is arbitrary (but finite), is proposed. The method uses the spectral resolution, and avoids the determination of eigenvectors when the tensor is invertible. For any given dimension n, an appropriately constructed van der Monde matrix is shown to play a key role in the construction of each of the component matrices (and their inverses) in the polar decomposition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe direct measurement of phase of ballistic photons transmitted through objects hidden in a turbid medium using a polarization interferometer employing a rotating analyzer. The unwrapped phase difference measurements from interferometry was possible for medium levels of turbidity and accurate phase measurement from the sinusoidal intensity was not detectable when l/l* is increased beyond 4.3. The measured phase on reconstruction using standard tomographic algorithms resulted in the recovery of the refractive index profile of the object hidden in the turbid medium.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper proposes a study of symmetrical and related components, based on the theory of linear vector spaces. Using the concept of equivalence, the transformation matrixes of Clarke, Kimbark, Concordia, Boyajian and Koga are shown to be column equivalent to Fortescue's symmetrical-component transformation matrix. With a constraint on power, criteria are presented for the choice of bases for voltage and current vector spaces. In particular, it is shown that, for power invariance, either the same orthonormal (self-reciprocal) basis must be chosen for both voltage and current vector spaces, or the basis of one must be chosen to be reciprocal to that of the other. The original �¿, ��, 0 components of Clarke are modified to achieve power invariance. For machine analysis, it is shown that invariant transformations lead to reciprocal mutual inductances between the equivalent circuits. The relative merits of the various components are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated quadratic nonlinearity (beta(HRS)) and linear and circular depolarization ratios (D and D', respectively) of a series of 1:1 complexes of tropyliumtetrafluoroborate as a cation and methyl-substituted benzenes as pi-donors by making polarization resolved hyper-Rayleigh scattering measurements in solution. The measured D and D' values are much lower than the values expected from a typical sandwich or a T-shaped geometry of a complex. In the cation-pi complexes studied here, the D value varies from 1.36 to 1.46 and D' from 1.62 to 1.72 depending on the number of methyl substitutions on the benzene ring. In order to probe it further, beta, D and D' were computed using the Zerner intermediate neglect of differential overlap-correction vector self-consistent reaction field technique including single and double configuration interactions in the absence and presence of BF4- anion. In the absence of the anion, the calculated value of D varies from 4.20 to 4.60 and that of D' from 2.45 to 2.72 which disagree with experimental values. However, by arranging three cation-pi BF4- complexes in a trigonal symmetry, the computed values are brought to agreement with experiments. When such an arrangement was not considered, the calculated beta values were lower than the experimental values by more than a factor of two. This unprecedented influence of the otherwise ``unimportant'' anion in solution on the beta value and depolarization ratios of these cation-pi complexes is highlighted and emphasized in this paper. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4716020]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let be a noncompact symmetric space of higher rank. We consider two types of averages of functions: one, over level sets of the heat kernel on and the other, over geodesic spheres. We prove injectivity results for functions in which extend the results in Pati and Sitaram (Sankya Ser A 62:419-424, 2000).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nearly pollution-free solutions of the Helmholtz equation for k-values corresponding to visible light are demonstrated and verified through experimentally measured forward scattered intensity from an optical fiber. Numerically accurate solutions are, in particular, obtained through a novel reformulation of the H-1 optimal Petrov-Galerkin weak form of the Helmholtz equation. Specifically, within a globally smooth polynomial reproducing framework, the compact and smooth test functions are so designed that their normal derivatives are zero everywhere on the local boundaries of their compact supports. This circumvents the need for a priori knowledge of the true solution on the support boundary and relieves the weak form of any jump boundary terms. For numerical demonstration of the above formulation, we used a multimode optical fiber in an index matching liquid as the object. The scattered intensity and its normal derivative are computed from the scattered field obtained by solving the Helmholtz equation, using the new formulation and the conventional finite element method. By comparing the results with the experimentally measured scattered intensity, the stability of the solution through the new formulation is demonstrated and its closeness to the experimental measurements verified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present in this paper, approximate analytical expressions for the intensity of light scattered by a rough surface, whose elevation. xi(x,y) in the z-direction is a zero mean stationary Gaussian random variable. With (x,y) and (x',y') being two points on the surface, we have h. = 0 with a correlation, = sigma(2)g(r), where r = (x - x')(2) + ( y - y')(2)](1/2) is the distance between these two points. We consider g(r) = exp-r/l)(beta)] with 1 <= beta <= 2, showing that g(0) = 1 and g(r) -> 0 for r >> l. The intensity expression is sought to be expressed as f(v(xy)) = {1 + (c/2y)v(x)(2) + v(y)(2)]}(-y), where v(x) and v(y) are the wave vectors of scattering, as defined by the Beckmann notation. In the paper, we present expressions for c and y, in terms of sigma, l, and beta. The closed form expressions are verified to be true, for the cases beta = 1 and beta = 2, for which exact expressions are known. For other cases, i.e., beta not equal 1, 2 we present approximate expressions for the scattered intensity, in the range, v(xy) = (v(x)(2) + v(y)(2))(1/2) <= 6.0 and show that the relation for f(v(xy)), given above, expresses the scattered intensity quite accurately, thus providing a simple computational methods in situations of practical importance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A natural class of weighted Bergman spaces on the symmetrized polydisc is isometrically embedded as a subspace in the corresponding weighted Bergman space on the polydisc. We find an orthonormal basis for this subspace. It enables us to compute the kernel function for the weighted Bergman spaces on the symmetrized polydisc using the explicit nature of our embedding. This family of kernel functions includes the Szego and the Bergman kernel on the symmetrized polydisc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to obtain certain characterizations for the image of a Sobolev space on the Heisenberg group under the heat kernel transform. We give three types of characterizations for the image of a Sobolev space of positive order H-m (H-n), m is an element of N-n, under the heat kernel transform on H-n, using direct sum and direct integral of Bergmann spaces and certain unitary representations of H-n which can be realized on the Hilbert space of Hilbert-Schmidt operators on L-2 (R-n). We also show that the image of Sobolev space of negative order H-s (H-n), s(> 0) is an element of R is a direct sum of two weighted Bergman spaces. Finally, we try to obtain some pointwise estimates for the functions in the image of Schwartz class on H-n under the heat kernel transform. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given a metric space with a Borel probability measure, for each integer N, we obtain a probability distribution on N x N distance matrices by considering the distances between pairs of points in a sample consisting of N points chosen independently from the metric space with respect to the given measure. We show that this gives an asymptotically bi-Lipschitz relation between metric measure spaces and the corresponding distance matrices. This is an effective version of a result of Vershik that metric measure spaces are determined by associated distributions on infinite random matrices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the study of holomorphic maps, the term ``rigidity'' refers to certain types of results that give us very specific information about a general class of holomorphic maps owing to the geometry of their domains or target spaces. Under this theme, we begin by studying when, given two compact connected complex manifolds X and Y, a degree-one holomorphic map f :Y -> X is a biholomorphism. Given that the real manifolds underlying X and Y are diffeomorphic, we provide a condition under which f is a biholomorphism. Using this result, we deduce a rigidity result for holomorphic self-maps of the total space of a holomorphic fiber space. Lastly, we consider products X = X-1 x X-2 and Y = Y-1 x Y-2 of compact connected complex manifolds. When X-1 is a Riemann surface of genus >= 2, we show that any non-constant holomorphic map F:Y -> X is of a special form.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove end point estimate for Radon transform of radial functions on affine Grasamannian and real hyperbolic space. We also discuss analogs of these results on the sphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the problem of phase retrieval from Fourier transform magnitude spectrum for continuous-time signals that lie in a shift-invariant space spanned by integer shifts of a generator kernel. The phase retrieval problem for such signals is formulated as one of reconstructing the combining coefficients in the shift-invariant basis expansion. We develop sufficient conditions on the coefficients and the bases to guarantee exact phase retrieval, by which we mean reconstruction up to a global phase factor. We present a new class of discrete-domain signals that are not necessarily minimum-phase, but allow for exact phase retrieval from their Fourier magnitude spectra. We also establish Hilbert transform relations between log-magnitude and phase spectra for this class of discrete signals. It turns out that the corresponding continuous-domain counterparts need not satisfy a Hilbert transform relation; notwithstanding, the continuous-domain signals can be reconstructed from their Fourier magnitude spectra. We validate the reconstruction guarantees through simulations for some important classes of signals such as bandlimited signals and piecewise-smooth signals. We also present an application of the proposed phase retrieval technique for artifact-free signal reconstruction in frequency-domain optical-coherence tomography (FDOCT).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study moduli spaces M-X (r, c(1), c(2)) parametrizing slope semistable vector bundles of rank r and fixed Chern classes c(1), c(2) on a ruled surface whose base is a rational nodal curve. We showthat under certain conditions, these moduli spaces are irreducible, smooth and rational (when non-empty). We also prove that they are non-empty in some cases. We show that for a rational ruled surface defined over real numbers, the moduli space M-X (r, c(1), c(2)) is rational as a variety defined over R.