900 resultados para STOCHASTIC OPTIMAL CONTROL
Resumo:
This paper considers an aircraft collision avoidance design problem that also incorporates design of the aircraft’s return-to-course flight. This control design problem is formulated as a non-linear optimal-stopping control problem; a formulation that does not require a prior knowledge of time taken to perform the avoidance and return-to-course manoeuvre. A dynamic programming solution to the avoidance and return-to-course problem is presented, before a Markov chain numerical approximation technique is described. Simulation results are presented that illustrate the proposed collision avoidance and return-to-course flight approach.
Resumo:
Mounting scientific evidence suggests newly imposed disturbance and/or alterations to existing disturbances facilitate invasion. Several empirical studies have explored the role of disturbance in invasion, but little work has been done to fit current understanding into a format useful for practical control efforts. We are working towards addressing this shortcoming by developing a metapopulation model couched in a decision theory framework. This approach has allowed us to investigate how incorporating the negative effects of disturbance on native vegetation into decision-making can change optimal control measures. In this paper, we present some preliminary results.
Resumo:
We study the trade-off between delivery delay and energy consumption in delay tolerant mobile wireless networks that use two-hop relaying. The source may not have perfect knowledge of the delivery status at every instant. We formulate the problem as a stochastic control problem with partial information, and study structural properties of the optimal policy. We also propose a simple suboptimal policy. We then compare the performance of the suboptimal policy against that of the optimal control with perfect information. These are bounds on the performance of the proposed policy with partial information. Several other related open loop policies are also compared with these bounds.
Resumo:
We study risk-sensitive control of continuous time Markov chains taking values in discrete state space. We study both finite and infinite horizon problems. In the finite horizon problem we characterize the value function via Hamilton Jacobi Bellman equation and obtain an optimal Markov control. We do the same for infinite horizon discounted cost case. In the infinite horizon average cost case we establish the existence of an optimal stationary control under certain Lyapunov condition. We also develop a policy iteration algorithm for finding an optimal control.
Resumo:
Sequential Monte Carlo methods, also known as particle methods, are a widely used set of computational tools for inference in non-linear non-Gaussian state-space models. In many applications it may be necessary to compute the sensitivity, or derivative, of the optimal filter with respect to the static parameters of the state-space model; for instance, in order to obtain maximum likelihood model parameters of interest, or to compute the optimal controller in an optimal control problem. In Poyiadjis et al. [2011] an original particle algorithm to compute the filter derivative was proposed and it was shown using numerical examples that the particle estimate was numerically stable in the sense that it did not deteriorate over time. In this paper we substantiate this claim with a detailed theoretical study. Lp bounds and a central limit theorem for this particle approximation of the filter derivative are presented. It is further shown that under mixing conditions these Lp bounds and the asymptotic variance characterized by the central limit theorem are uniformly bounded with respect to the time index. We demon- strate the performance predicted by theory with several numerical examples. We also use the particle approximation of the filter derivative to perform online maximum likelihood parameter estimation for a stochastic volatility model.
Resumo:
The aim of this paper is to explain under which circumstances using TACs as instrument to manage a fishery along with fishing periods may be interesting from a regulatory point of view. In order to do this, the deterministic analysis of Homans and Wilen (1997)and Anderson (2000) is extended to a stochastic scenario where the resource cannot be measured accurately. The resulting endogenous stochastic model is numerically solved for finding the optimal control rules in the Iberian sardine stock. Three relevant conclusions can be highligted from simulations. First, the higher the uncertainty about the state of the stock is, the lower the probability of closing the fishery is. Second, the use of TACs as management instrument in fisheries already regulated with fishing periods leads to: i) An increase of the optimal season length and harvests, especially for medium and high number of licences, ii) An improvement of the biological and economic variables when the size of the fleet is large; and iii) Eliminate the extinction risk for the resource. And third, the regulator would rather select the number of licences and do not restrict the season length.
Resumo:
The low-thrust guidance problem is defined as the minimum terminal variance (MTV) control of a space vehicle subjected to random perturbations of its trajectory. To accomplish this control task, only bounded thrust level and thrust angle deviations are allowed, and these must be calculated based solely on the information gained from noisy, partial observations of the state. In order to establish the validity of various approximations, the problem is first investigated under the idealized conditions of perfect state information and negligible dynamic errors. To check each approximate model, an algorithm is developed to facilitate the computation of the open loop trajectories for the nonlinear bang-bang system. Using the results of this phase in conjunction with the Ornstein-Uhlenbeck process as a model for the random inputs to the system, the MTV guidance problem is reformulated as a stochastic, bang-bang, optimal control problem. Since a complete analytic solution seems to be unattainable, asymptotic solutions are developed by numerical methods. However, it is shown analytically that a Kalman filter in cascade with an appropriate nonlinear MTV controller is an optimal configuration. The resulting system is simulated using the Monte Carlo technique and is compared to other guidance schemes of current interest.
Resumo:
Many aspects of human motor behavior can be understood using optimality principles such as optimal feedback control. However, these proposed optimal control models are risk-neutral; that is, they are indifferent to the variability of the movement cost. Here, we propose the use of a risk-sensitive optimal controller that incorporates movement cost variance either as an added cost (risk-averse controller) or as an added value (risk-seeking controller) to model human motor behavior in the face of uncertainty. We use a sensorimotor task to test the hypothesis that subjects are risk-sensitive. Subjects controlled a virtual ball undergoing Brownian motion towards a target. Subjects were required to minimize an explicit cost, in points, that was a combination of the final positional error of the ball and the integrated control cost. By testing subjects on different levels of Brownian motion noise and relative weighting of the position and control cost, we could distinguish between risk-sensitive and risk-neutral control. We show that subjects change their movement strategy pessimistically in the face of increased uncertainty in accord with the predictions of a risk-averse optimal controller. Our results suggest that risk-sensitivity is a fundamental attribute that needs to be incorporated into optimal feedback control models.
Resumo:
Many aspects of human motor behavior can be understood using optimality principles such as optimal feedback control. However, these proposed optimal control models are risk-neutral; that is, they are indifferent to the variability of the movement cost. Here, we propose the use of a risk-sensitive optimal controller that incorporates movement cost variance either as an added cost (risk-averse controller) or as an added value (risk-seeking controller) to model human motor behavior in the face of uncertainty. We use a sensorimotor task to test the hypothesis that subjects are risk-sensitive. Subjects controlled a virtual ball undergoing Brownian motion towards a target. Subjects were required to minimize an explicit cost, in points, that was a combination of the final positional error of the ball and the integrated control cost. By testing subjects on different levels of Brownian motion noise and relative weighting of the position and control cost, we could distinguish between risk-sensitive and risk-neutral control. We show that subjects change their movement strategy pessimistically in the face of increased uncertainty in accord with the predictions of a risk-averse optimal controller. Our results suggest that risk-sensitivity is a fundamental attribute that needs to be incorporated into optimal feedback control models. © 2010 Nagengast et al.
Resumo:
This paper is concerned with time-domain optimal control of active suspensions. The optimal control problem formulation has been generalised by incorporating both road disturbances (ride quality) and a representation of driver inputs (handling quality) into the optimal control formulation. A regular optimal control problem as well as a risk-sensitive exponential optimal control performance index is considered. Emphasis has been given to practical considerations including the issue of state estimation in the presence of load disturbances (driver inputs). © 2012 IEEE.
Resumo:
OBJECTIVE
To assess the relationship between glycemic control, pre-eclampsia, and gestational hypertension in women with type 1 diabetes.
RESEARCH DESIGN AND METHODS
Pregnancy outcome (pre-eclampsia or gestational hypertension) was assessed prospectively in 749 women from the randomized controlled Diabetes and Pre-eclampsia Intervention Trial (DAPIT). HbA1c (A1C) values were available up to 6 months before pregnancy (n = 542), at the first antenatal visit (median 9 weeks) (n = 721), at 26 weeks’ gestation (n = 592), and at 34 weeks’ gestation (n = 519) and were categorized as optimal (<6.1%: referent), good (6.1–6.9%), moderate (7.0–7.9%), and poor (=8.0%) glycemic control, respectively.
RESULTS
Pre-eclampsia and gestational hypertension developed in 17 and 11% of pregnancies, respectively. Women who developed pre-eclampsia had significantly higher A1C values before and during pregnancy compared with women who did not develop pre-eclampsia (P < 0.05, respectively). In early pregnancy, A1C =8.0% was associated with a significantly increased risk of pre-eclampsia (odds ratio 3.68 [95% CI 1.17–11.6]) compared with optimal control. At 26 weeks’ gestation, A1C values =6.1% (good: 2.09 [1.03–4.21]; moderate: 3.20 [1.47–7.00]; and poor: 3.81 [1.30–11.1]) and at 34 weeks’ gestation A1C values =7.0% (moderate: 3.27 [1.31–8.20] and poor: 8.01 [2.04–31.5]) significantly increased the risk of pre-eclampsia compared with optimal control. The adjusted odds ratios for pre-eclampsia for each 1% decrement in A1C before pregnancy, at the first antenatal visit, at 26 weeks’ gestation, and at 34 weeks’ gestation were 0.88 (0.75–1.03), 0.75 (0.64–0.88), 0.57 (0.42–0.78), and 0.47 (0.31–0.70), respectively. Glycemic control was not significantly associated with gestational hypertension.
CONCLUSIONS
Women who developed pre-eclampsia had significantly higher A1C values before and during pregnancy. These data suggest that optimal glycemic control both early and throughout pregnancy may reduce the risk of pre-eclampsia in women with type 1 diabetes.
Resumo:
This note investigates the motion control of an autonomous underwater vehicle (AUV). The AUV is modeled as a nonholonomic system as any lateral motion of a conventional, slender AUV is quickly damped out. The problem is formulated as an optimal kinematic control problem on the Euclidean Group of Motions SE(3), where the cost function to be minimized is equal to the integral of a quadratic function of the velocity components. An application of the Maximum Principle to this optimal control problem yields the appropriate Hamiltonian and the corresponding vector fields give the necessary conditions for optimality. For a special case of the cost function, the necessary conditions for optimality can be characterized more easily and we proceed to investigate its solutions. Finally, it is shown that a particular set of optimal motions trace helical paths. Throughout this note we highlight a particular case where the quadratic cost function is weighted in such a way that it equates to the Lagrangian (kinetic energy) of the AUV. For this case, the regular extremal curves are constrained to equate to the AUV's components of momentum and the resulting vector fields are the d'Alembert-Lagrange equations in Hamiltonian form.
Resumo:
The relationship between minimum variance and minimum expected quadratic loss feedback controllers for linear univariate discrete-time stochastic systems is reviewed by taking the approach used by Caines. It is shown how the two methods can be regarded as providing identical control actions as long as a noise-free measurement state-space model is employed.
Resumo:
One of the main goals of the pest control is to maintain the density of the pest population in the equilibrium level below economic damages. For reaching this goal, the optimal pest control problem was divided in two parts. In the first part, the two optimal control functions were considered. These functions move the ecosystem pest-natural enemy at an equilibrium state below the economic injury level. In the second part, the one optimal control function stabilizes the ecosystem in this level, minimizing the functional that characterizes quadratic deviations of this level. The first problem was resolved through the application of the Maximum Principle of Pontryagin. The Dynamic Programming was used for the resolution of the second optimal pest control problem.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)