398 resultados para Runtime


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The prevalence of multicore processors is bound to drive most kinds of software development towards parallel programming. To limit the difficulty and overhead of parallel software design and maintenance, it is crucial that parallel programming models allow an easy-to-understand, concise and dense representation of parallelism. Parallel programming models such as Cilk++ and Intel TBBs attempt to offer a better, higher-level abstraction for parallel programming than threads and locking synchronization. It is not straightforward, however, to express all patterns of parallelism in these models. Pipelines are an important parallel construct, although difficult to express in Cilk and TBBs in a straightfor- ward way, not without a verbose restructuring of the code. In this paper we demonstrate that pipeline parallelism can be easily and concisely expressed in a Cilk-like language, which we extend with input, output and input/output dependency types on procedure arguments, enforced at runtime by the scheduler. We evaluate our implementation on real applications and show that our Cilk-like scheduler, extended to track and enforce these dependencies has performance comparable to Cilk++.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Task-based dataflow programming models and runtimes emerge as promising candidates for programming multicore and manycore architectures. These programming models analyze dynamically task dependencies at runtime and schedule independent tasks concurrently to the processing elements. In such models, cache locality, which is critical for performance, becomes more challenging in the presence of fine-grain tasks, and in architectures with many simple cores.

This paper presents a combined hardware-software approach to improve cache locality and offer better performance is terms of execution time and energy in the memory system. We propose the explicit bulk prefetcher (EBP) and epoch-based cache management (ECM) to help runtimes prefetch task data and guide the replacement decisions in caches. The runtimem software can use this hardware support to expose its internal knowledge about the tasks to the architecture and achieve more efficient task-based execution. Our combined scheme outperforms HW-only prefetchers and state-of-the-art replacement policies, improves performance by an average of 17%, generates on average 26% fewer L2 misses, and consumes on average 28% less energy in the components of the memory system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Task dataflow languages simplify the specification of parallel programs by dynamically detecting and enforcing dependencies between tasks. These languages are, however, often restricted to a single level of parallelism. This language design is reflected in the runtime system, where a master thread explicitly generates a task graph and worker threads execute ready tasks and wake-up their dependents. Such an approach is incompatible with state-of-the-art schedulers such as the Cilk scheduler, that minimize the creation of idle tasks (work-first principle) and place all task creation and scheduling off the critical path. This paper proposes an extension to the Cilk scheduler in order to reconcile task dependencies with the work-first principle. We discuss the impact of task dependencies on the properties of the Cilk scheduler. Furthermore, we propose a low-overhead ticket-based technique for dependency tracking and enforcement at the object level. Our scheduler also supports renaming of objects in order to increase task-level parallelism. Renaming is implemented using versioned objects, a new type of hyper object. Experimental evaluation shows that the unified scheduler is as efficient as the Cilk scheduler when tasks have no dependencies. Moreover, the unified scheduler is more efficient than SMPSS, a particular implementation of a task dataflow language.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inherent difficulty of thread-based shared-memory programming has recently motivated research in high-level, task-parallel programming models. Recent advances of Task-Parallel models add implicit synchronization, where the system automatically detects and satisfies data dependencies among spawned tasks. However, dynamic dependence analysis incurs significant runtime overheads, because the runtime must track task resources and use this information to schedule tasks while avoiding conflicts and races.
We present SCOOP, a compiler that effectively integrates static and dynamic analysis in code generation. SCOOP combines context-sensitive points-to, control-flow, escape, and effect analyses to remove redundant dependence checks at runtime. Our static analysis can work in combination with existing dynamic analyses and task-parallel runtimes that use annotations to specify tasks and their memory footprints. We use our static dependence analysis to detect non-conflicting tasks and an existing dynamic analysis to handle the remaining dependencies. We evaluate the resulting hybrid dependence analysis on a set of task-parallel programs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present BDDT, a task-parallel runtime system that dynamically discovers and resolves dependencies among parallel tasks. BDDT allows the programmer to specify detailed task footprints on any memory address range, multidimensional array tile or dynamic region. BDDT uses a block-based dependence analysis with arbitrary granularity. The analysis is applicable to existing C programs without having to restructure object or array allocation, and provides flexibility in array layouts and tile dimensions.
We evaluate BDDT using a representative set of benchmarks, and we compare it to SMPSs (the equivalent runtime system in StarSs) and OpenMP. BDDT performs comparable to or better than SMPSs and is able to cope with task granularity as much as one order of magnitude finer than SMPSs. Compared to OpenMP, BDDT performs up to 3.9× better for benchmarks that benefit from dynamic dependence analysis. BDDT provides additional data annotations to bypass dependence analysis. Using these annotations, BDDT outperforms OpenMP also in benchmarks where dependence analysis does not discover additional parallelism, thanks to a more efficient implementation of the runtime system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Manipulator motion planning is a task which relies heavily on the construction of a configuration space prior to path planning. However when fast real-time motion is needed, the full construction of the manipulator's high-dimensional configu-ration space can be too slow and expensive. Alternative planning methods, which avoid this full construction of the manipulator's configuration space are needed to solve this problem. Here, one such existing local planning method for manipulators based on configuration-sampling and subgoal-selection has been extended. Using a modified Artificial Potential Fields (APF) function, goal-configuration sampling and a novel subgoal selection method, it provides faster, more optimal paths than the previously proposed work. Simulation results show a decrease in both runtime and path lengths, along with a decrease in unexpected local minimum and crashing issues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Processor architectures has taken a turn towards many-core processors, which integrate multiple processing cores on a single chip to increase overall performance, and there are no signs that this trend will stop in the near future. Many-core processors are harder to program than multi-core and single-core processors due to the need of writing parallel or concurrent programs with high degrees of parallelism. Moreover, many-cores have to operate in a mode of strong scaling because of memory bandwidth constraints. In strong scaling increasingly finer-grain parallelism must be extracted in order to keep all processing cores busy.

Task dataflow programming models have a high potential to simplify parallel program- ming because they alleviate the programmer from identifying precisely all inter-task de- pendences when writing programs. Instead, the task dataflow runtime system detects and enforces inter-task dependences during execution based on the description of memory each task accesses. The runtime constructs a task dataflow graph that captures all tasks and their dependences. Tasks are scheduled to execute in parallel taking into account dependences specified in the task graph.

Several papers report important overheads for task dataflow systems, which severely limits the scalability and usability of such systems. In this paper we study efficient schemes to manage task graphs and analyze their scalability. We assume a programming model that supports input, output and in/out annotations on task arguments, as well as commutative in/out and reductions. We analyze the structure of task graphs and identify versions and generations as key concepts for efficient management of task graphs. Then, we present three schemes to manage task graphs building on graph representations, hypergraphs and lists. We also consider a fourth edge-less scheme that synchronizes tasks using integers. Analysis using micro-benchmarks shows that the graph representation is not always scalable and that the edge-less scheme introduces least overhead in nearly all situations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper introduces hybrid address spaces as a fundamental design methodology for implementing scalable runtime systems on many-core architectures without hardware support for cache coherence. We use hybrid address spaces for an implementation of MapReduce, a programming model for large-scale data processing, and the implementation of a remote memory access (RMA) model. Both implementations are available on the Intel SCC and are portable to similar architectures. We present the design and implementation of HyMR, a MapReduce runtime system whereby different stages and the synchronization operations between them alternate between a distributed memory address space and a shared memory address space, to improve performance and scalability. We compare HyMR to a reference implementation and we find that HyMR improves performance by a factor of 1.71× over a set of representative MapReduce benchmarks. We also compare HyMR with Phoenix++, a state-of-art implementation for systems with hardware-managed cache coherence in terms of scalability and sustained to peak data processing bandwidth, where HyMR demon- strates improvements of a factor of 3.1× and 3.2× respectively. We further evaluate our hybrid remote memory access (HyRMA) programming model and assess its performance to be superior of that of message passing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heterocyclic aromatic amines (HCA) are carcinogenic mutagens formed during cooking of proteinaceous foods, particularly meat. To assist in the ongoing search for biomarkers of HCA exposure in blood, a method is described for the extraction from human plasma of the most abundant HCAs: 2-Amino-1-methyl-6-phenylimidazo(4,5-b)pyridine (PhIP), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx) (and its isomer 7,8-DiMeIQx), using Hollow Fibre Membrane Liquid-Phase Microextraction. This technique employs 2.5 cm lengths of porous polypropylene fibres impregnated with organic solvent to facilitate simultaneous extraction from an alkaline aqueous sample into a low volume acidic acceptor phase. This low cost protocol is extensively optimised for fibre length, extraction time, sample pH and volume. Detection is by UPLC-MS/MS using positive mode electrospray ionisation with a 3.4 min runtime, with optimum peak shape, sensitivity and baseline separation being achieved at pH 9.5. To our knowledge this is the first description of HCA chromatography under alkaline conditions. Application of fixed ion ratio tolerances for confirmation of analyte identity is discussed. Assay precision is between 4.5 and 8.8% while lower limits of detection between 2 and 5 pg/mL are below the concentrations postulated for acid-labile HCA-protein adducts in blood.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract—Power capping is an essential function for efficient power budgeting and cost management on modern server systems. Contemporary server processors operate under power caps by using dynamic voltage and frequency scaling (DVFS). However, these processors are often deployed in non-uniform memory
access (NUMA) architectures, where thread allocation between cores may significantly affect performance and power consumption. This paper proposes a method which maximizes performance under power caps on NUMA systems by dynamically optimizing two knobs: DVFS and thread allocation. The method selects the optimal combination of the two knobs with models based on artificial neural network (ANN) that captures the nonlinear effect of thread allocation on performance. We implement
the proposed method as a runtime system and evaluate it with twelve multithreaded benchmarks on a real AMD Opteron based NUMA system. The evaluation results show that our method outperforms a naive technique optimizing only DVFS by up to
67.1%, under a power cap.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many graph datasets are labelled with discrete and numeric attributes. Most frequent substructure discovery algorithms ignore numeric attributes; in this paper we show how they can be used to improve search performance and discrimination. Our thesis is that the most descriptive substructures are those which are normative both in terms of their structure and in terms of their numeric values. We explore the relationship between graph structure and the distribution of attribute values and propose an outlier-detection step, which is used as a constraint during substructure discovery. By pruning anomalous vertices and edges, more weight is given to the most descriptive substructures. Our method is applicable to multi-dimensional numeric attributes; we outline how it can be extended for high-dimensional data. We support our findings with experiments on transaction graphs and single large graphs from the domains of physical building security and digital forensics, measuring the effect on runtime, memory requirements and coverage of discovered patterns, relative to the unconstrained approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes middleware-level support for agent mobility, targeted at hierarchically structured wireless sensor and actuator network applications. Agent mobility enables a dynamic deployment and adaptation of the application on top of the wireless network at runtime, while allowing the middleware to optimize the placement of agents, e.g., to reduce wireless network traffic, transparently to the application programmer. The paper presents the design of the mechanisms and protocols employed to instantiate agents on nodes and to move agents between nodes. It also gives an evaluation of a middleware prototype running on Imote2 nodes that communicate over ZigBee. The results show that our implementation is reasonably efficient and fast enough to support the envisioned functionality on top of a commodity multi-hop wireless technology. Our work is to a large extent platform-neutral, thus it can inform the design of other systems that adopt a hierarchical structuring of mobile components. © 2012 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering.