957 resultados para Robots mòbils -- Sistemes de control
Resumo:
Robust climbing in unstructured environments has been one of the long-standing challenges in robotics research. Among others, the control of large adhesion forces is still an important problem that significantly restricts the locomotion performance of climbing robots. The main contribution of this paper is to propose a novel approach to autonomous robot climbing which makes use of hot melt adhesion (HMA). The HMA material is known as an economical solution to achieve large adhesion forces, which can be varied by controlling the material temperature. For locomotion on both inclined and vertical walls, this paper investigates the basic characteristics of HMA material, and proposes a design and control of a climbing robot that uses the HMA material for attaching and detaching its body to the environment. The robot is equipped with servomotors and thermal control units to actively vary the temperature of the material, and the coordination of these components enables the robot to walk against the gravitational forces even with a relatively large body weight. A real-world platform is used to demonstrate locomotion on a vertical wall, and the experimental result shows the feasibility and overall performances of this approach. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Modular self-reconfigurable robots have previously demonstrated that automatic control of their own body shapes enriches their behavioural functions. However, having predefined rigid modules technically limits real-world systems from being hyper-redundant and compliant. Encouraged by recent progress using elastically deformable material for robots, we propose the concept of soft self-reconfigurable robots which may become hyper-flexible during interaction with the environment. As the first attempt towards this goal, the paper proposes a novel approach using viscoelastic material Hot-Melt Adhesives (HMAs): for physical connection and disconnection control between bodies that are not necessarily predefined rigid modules. We present a model that characterizes the temperature dependency of the strength of HMA bonds, which is then validated and used in a feedback controller for automatic connection and disconnection. Using a minimalistic robot platform that is equipped with two devices handling HMAs, the performance of this method is evaluated in a pick-and-place experiment with aluminium and wooden parts. © 2012 IEEE.
Resumo:
This article discusses the issues of adaptive autonomous navigation as a challenge of artificial intelligence. We argue that, in order to enhance the dexterity and adaptivity in robot navigation, we need to take into account the decentralized mechanisms which exploit physical system-environment interactions. In this paper, by introducing a few underactuated locomotion systems, we explain (1) how mechanical body structures are related to motor control in locomotion behavior, (2) how a simple computational control process can generate complex locomotion behavior, and (3) how a motor control architecture can exploit the body dynamics through a learning process. Based on the case studies, we discuss the challenges and perspectives toward a new framework of adaptive robot control. © Springer-Verlag Berlin Heidelberg 2007.
Resumo:
本文考虑了由2个全方位移动机器人组成的混合动力学系统的协调拟镇定问题.利用机器人位置之间的向量与机器人目标之间向量的内积,设计了多步拟镇定律,该控制律能够在避碰后按指数速率运动到目标点,且在整个过程中两机器人之间的距离不小于避碰的安全距离.最后对2个全方位移动机器人进行了仿真,验证了所给方法的有效性。
Resumo:
Q. Meng and M. H. Lee, Learning and Control in Assistive Robotics for the Elderly, IEEE Conference on Robotics, Automation and Mechatronics (RAM), Singapore, 2004.
Resumo:
M.H.Lee, Q. Meng and H. Holstein, ?Learning and Reuse of Experience in Behavior-Based Service Robots?, Seventh International Conference on Control, Automation, Robotics and Vision (ICARCV2002), pp1019-24, December 2002, Singapore
Resumo:
M.H. Lee, Q. Meng and F. Chao, 'Developmental Learning for Autonomous Robots', Robotics and Autonomous Systems, 55(9), pp 750-759, 2007.
Resumo:
ROSSI: Emergence of communication in Robots through Sensorimotor and Social Interaction, T. Ziemke, A. Borghi, F. Anelli, C. Gianelli, F. Binkovski, G. Buccino, V. Gallese, M. Huelse, M. Lee, R. Nicoletti, D. Parisi, L. Riggio, A. Tessari, E. Sahin, International Conference on Cognitive Systems (CogSys 2008), University of Karlsruhe, Karlsruhe, Germany, 2008 Sponsorship: EU-FP7
Resumo:
Un robot autobalanceado es un dispositivo que, aun teniendo su centro de masas por encima del eje de giro, consigue mantener el equilibrio. Se basa o aproxima al problema del péndulo invertido. Este proyecto comprende el desarrollo e implementación de un robot autobalanceado basado en la plataforma Arduino. Se utilizará una placa Arduino y se diseñará y fabricará con un shield o tarjeta (PCB), donde se incluirán los elementos hardware que se consideren necesarios. Abarca el estudio y montaje del chasis y los sistemas de sensado, control digital, alimentación y motores
Resumo:
The growing number of robotic solutions geared to interact socially with humans, social robots, urge the study of the factors that will facilitate or hinder future human robot collaboration. Hence the research question: what are the factors that predict intention to work with a social robot in the near future. To answer this question the following socio-cognitive models were studied, the theory of reasoned action, the theory of planned behavior and the model of goal directed behavior. These models purport that all the other variables will only have an indirect effect on behavior. That is, through the variables of the model. Based on the research on robotics and social perception/ cognition, social robot appearance, belief in human nature uniqueness, perceived warmth, perceived competence, anthropomorphism, negative attitude towards robots with human traits and negative attitudes towards interactions with robots were studied for their effects on attitude towards working with a social robot, perceived behavioral control, positive anticipated emotions and negative anticipated emotions. Study 1 identified the social representation of robot. Studies 2 to 5 investigated the psychometric properties of the Portuguese version of the negative attitude towards robots scale. Study 6 investigated the psychometric properties of the belief in human nature uniqueness scale. Study 7 tested the theory of reasoned action and the theory of planned behavior. Study 8 tested the model of goal directed behavior. Studies 7 and 8 also tested the role of the external variables. Study 9 tested and compared the predictive power of the three socio-cognitive models. Finally conclusion are drawn from the research results, and future research suggestions are offered.
Resumo:
Over the last two decades the research and development of legged locomotion robots has grown steadily. Legged systems present major advantages when compared with ‘traditional’ vehicles, because they allow locomotion in inaccessible terrain to vehicles with wheels and tracks. However, the robustness of legged robots, and especially their energy consumption, among other aspects, still lag behind mechanisms that use wheels and tracks. Therefore, in the present state of development, there are several aspects that need to be improved and optimized. Keeping these ideas in mind, this paper presents the review of the literature of different methods adopted for the optimization of the structure and locomotion gaits of walking robots. Among the distinct possible strategies often used for these tasks are referred approaches such as the mimicking of biological animals, the use of evolutionary schemes to find the optimal parameters and structures, the adoption of sound mechanical design rules, and the optimization of power-based indexes.
Resumo:
Dynamical systems theory is used as a theoretical language and tool to design a distributed control architecture for teams of mobile robots, that must transport a large object and simultaneously avoid collisions with (either static or dynamic) obstacles. Here we demonstrate in simulations and implementations in real robots that it is possible to simplify the architectures presented in previous work and to extend the approach to teams of n robots. The robots have no prior knowledge of the environment. The motion of each robot is controlled by a time series of asymptotical stable states. The attractor dynamics permits the integration of information from various sources in a graded manner. As a result, the robots show a strikingly smooth an stable team behaviour.
Resumo:
In this paper, it is studied the dynamics of the robotic bird in terms of time response and robustness. It is analyzed the wing angle of attack and the velocity of the bird, the tail influence, the gliding flight and the flapping flight. The results are positive for the construction of flying robots. The development of computational simulation based on the dynamic of the robotic bird should allow testing strategies and different algorithms of control such as integer and fractional controllers.
Resumo:
Under the pseudoinverse control, robots with kinematical redundancy exhibit an undesirable chaotic joint motion which leads to an erratic behavior. This paper studies the complexity of fractional dynamics of the chaotic response. Fourier and wavelet analysis provides a deeper insight, helpful to know better the lack of repeatability problem of redundant manipulators. This perspective for the study of the chaotic phenomena will permit the development of superior trajectory control algorithms.
Resumo:
Underwater acoustic networks can be quite effective to establish communication links between autonomous underwater vehicles (AUVs) and other vehicles or control units, enabling complex vehicle applications and control scenarios. A communications and control framework to support the use of underwater acoustic networks and sample application scenarios are described for single and multi-AUV operation.