925 resultados para Referral and Consultation - statistics and numerical data
Resumo:
Twenty-four whole blood and serum samples were drawn from an eight year-old heart transplant child during a 36 months follow-up. EBV serology was positive for VCA-IgM and IgG, and negative for EBNA-IgG at the age of five years old when the child presented with signs and symptoms suggestive of acute infectious mononucleosis. After 14 months, serological parameters were: positive VCA-IgG, EBNA-IgG and negative VCA-IgM. This serological pattern has been maintained since then even during episodes suggestive of EBV reactivation. PCR amplified a specific DNA fragment from the EBV gp220 (detection limit of 100 viral copies). All twenty-four whole blood samples yielded positive results by PCR, while 12 out of 24 serum samples were positive. We aimed at analyzing whether detection of EBV-DNA in serum samples by PCR was associated with overt disease as stated by the need of antiviral treatment and hospitalization. Statistical analysis showed agreement between the two parameters evidenced by the Kappa test (value 0.750; p < 0.001). We concluded that detection of EBV-DNA in serum samples of immunosuppressed patients might be used as a laboratory marker of active EBV disease when a Real-Time PCR or another quantitative method is not available.
Resumo:
In this thesis, a predictive analytical and numerical modeling approach for the orthogonal cutting process is proposed to calculate temperature distributions and subsequently, forces and stress distributions. The models proposed include a constitutive model for the material being cut based on the work of Weber, a model for the shear plane based on Merchants model, a model describing the contribution of friction based on Zorev’s approach, a model for the effect of wear on the tool based on the work of Waldorf, and a thermal model based on the works of Komanduri and Hou, with a fraction heat partition for a non-uniform distribution of the heat in the interfaces, but extended to encompass a set of contributions to the global temperature rise of chip, tool and work piece. The models proposed in this work, try to avoid from experimental based values or expressions, and simplifying assumptions or suppositions, as much as possible. On a thermo-physical point of view, the results were affected not only by the mechanical or cutting parameters chosen, but also by their coupling effects, instead of the simplifying way of modeling which is to contemplate only the direct effect of the variation of a parameter. The implementation of these models was performed using the MATLAB environment. Since it was possible to find in the literature all the parameters for AISI 1045 and AISI O2, these materials were used to run the simulations in order to avoid arbitrary assumption.
Resumo:
Fundação para a Ciência e a Tecnologia - SFRH/BD/27914/2006
Resumo:
Crisis-affected communities and global organizations for international aid are becoming increasingly digital as consequence geotechnology popularity. Humanitarian sector changed in profound ways by adopting new technical approach to obtain information from area with difficult geographical or political access. Since 2011, turkey is hosting a growing number of Syrian refugees along southeastern region. Turkish policy of hosting them in camps and the difficulty created by governors to international aid group expeditions to get information, made such international organizations to investigate and adopt other approach in order to obtain information needed. They intensified its remote sensing approach. However, the majority of studies used very high-resolution satellite imagery (VHRSI). The study area is extensive and the temporal resolution of VHRSI is low, besides it is infeasible only using these sensors as unique approach for the whole area. The focus of this research, aims to investigate the potentialities of mid-resolution imagery (here only Landsat) to obtain information from region in crisis (here, southeastern Turkey) through a new web-based platform called Google Earth Engine (GEE). Hereby it is also intended to verify GEE currently reliability once the Application Programming Interface (API) is still in beta version. The finds here shows that the basic functions are trustworthy. Results pointed out that Landsat can recognize change in the spectral resolution clearly only for the first settlement. The ongoing modifications vary for each case. Overall, Landsat demonstrated high limitations, but need more investigations and may be used, with restriction, as a support of VHRSI.
Resumo:
PURPOSE: Two groups of girls with premature breast development were studied retrospectively. We tried to identify clinical, radiological, and hormonal parameters that could distinguish between a benign, nonprogressive premature thelarche and a true precocious puberty. METHODS: The clinical outcome of 88 girls with breast enlargement before 6.1 years of age was analyzed. Taking into account the progression of their sexual maturation, we allocated the children into 2 groups: "Isolated Premature Thelarche" (n = 63) and "Precocious Puberty" (n = 25) groups. Chronological and bone ages, height and growth velocity centiles, computerized tomography of hypothalamus-pituitary area, pelvic ultrasonography, gonadotropin response to luteinizing hormone-releasing hormone stimulation as well as basal levels of luteinizing hormone, follicle-stimulating hormone, estradiol, and prolactin were studied in both groups. Statistical analysis were performed using the Student t test to compare the sample means. Fisher's exact test and chi² test were used to analyze the nonparametric variables. RESULTS: Isolated premature thelarche most frequently affected girls younger than 2 years who presented exaggerated follicle-stimulating hormone response to luteinizing hormone-releasing hormone stimulation test. The precocious puberty group had higher initial stature, accelerated growth rate and bone age, increased uterine and ovarian volumes, high spontaneous luteinizing hormone levels by immunofluorimetric assay, as well as a high luteinizing hormone response and peak luteinizing hormone/follicle-stimulating hormone ratio after luteinizing hormone-releasing hormone stimulation. CONCLUSION: At initial presentation, girls who undergo true precocious puberty present advanced bone age, increased uterine and ovarian volumes in addition to breast enlargement, as well as an luteinizing hormone-predominant response after a luteinizing hormone-releasing hormone stimulation test.
Resumo:
Grasslands in semi-arid regions, like Mongolian steppes, are facing desertification and degradation processes, due to climate change. Mongolia’s main economic activity consists on an extensive livestock production and, therefore, it is a concerning matter for the decision makers. Remote sensing and Geographic Information Systems provide the tools for advanced ecosystem management and have been widely used for monitoring and management of pasture resources. This study investigates which is the higher thematic detail that is possible to achieve through remote sensing, to map the steppe vegetation, using medium resolution earth observation imagery in three districts (soums) of Mongolia: Dzag, Buutsagaan and Khureemaral. After considering different thematic levels of detail for classifying the steppe vegetation, the existent pasture types within the steppe were chosen to be mapped. In order to investigate which combination of data sets yields the best results and which classification algorithm is more suitable for incorporating these data sets, a comparison between different classification methods were tested for the study area. Sixteen classifications were performed using different combinations of estimators, Landsat-8 (spectral bands and Landsat-8 NDVI-derived) and geophysical data (elevation, mean annual precipitation and mean annual temperature) using two classification algorithms, maximum likelihood and decision tree. Results showed that the best performing model was the one that incorporated Landsat-8 bands with mean annual precipitation and mean annual temperature (Model 13), using the decision tree. For maximum likelihood, the model that incorporated Landsat-8 bands with mean annual precipitation (Model 5) and the one that incorporated Landsat-8 bands with mean annual precipitation and mean annual temperature (Model 13), achieved the higher accuracies for this algorithm. The decision tree models consistently outperformed the maximum likelihood ones.
Resumo:
High performance fiber reinforced concrete (HPFRC) is developing rapidly to a modern structural material with unique rheological and mechanical characteristics. Despite applying several methodologies to achieve self15 compacting requirements, some doubts still remain regarding the most convenient strategy for developing a HPFRC. In the present study, an innovative mix design method is proposed for the development of high17 performance concrete reinforced with a relatively high dosage of steel fibers. The material properties of the developed concrete are assessed, and the concrete structural behavior is characterized under compressive, flexural and shear loading. This study better clarifies the significant contribution of fibers for shear resistance of concrete elements. This paper further discusses a FEM-based simulation, aiming to address the possibility of calibrating the constitutive model parameters related to fracture modes I and II.
Resumo:
In this work we present semi-analytical solutions for the electro-osmotic annular flow of viscoelastic fluids modeled by the Linear and Exponential PTT models. The viscoelastic fluid flows in the axial direction between two concentric cylinders under the combined influences of electrokinetic and pressure forcings. The analysis invokes the Debye-Hückel approximation and includes the limit case of pure electro-osmotic flow. The solution is valid for both no slip and slip velocity at the walls and the chosen slip boundary condition is the linear Navier slip velocity model. The combined effects of fluid rheology, electro-osmotic and pressure gradient forcings on the fluid velocity distribution are also discussed.
Resumo:
This work provides analytical and numerical solutions for the linear, quadratic and exponential Phan–Thien–Tanner (PTT) viscoelastic models, for axial and helical annular fully-developed flows under no slip and slip boundary conditions, the latter given by the linear and nonlinear Navier slip laws. The rheology of the three PTT model functions is discussed together with the influence of the slip velocity upon the flow velocity and stress fields. For the linear PTT model, full analytical solutions for the inverse problem (unknown velocity) are devised for the linear Navier slip law and two different slip exponents. For the linear PTT model with other values of the slip exponent and for the quadratic PTT model, the polynomial equation for the radial location (β) of the null shear stress must be solved numerically. For both models, the solution of the direct problem is given by an iterative procedure involving three nonlinear equations, one for β, other for the pressure gradient and another for the torque per unit length. For the exponential PTT model we devise a numerical procedure that can easily compute the numerical solution of the pure axial flow problem
Resumo:
In this work we provide a new mathematical model for the Pennes’ bioheat equation, assuming a fractional time derivative of single order. Alternative versions of the bioheat equation are studied and discussed, to take into account the temperature-dependent variability in the tissue perfusion, and both finite and infinite speed of heat propagation. The proposed bioheat model is solved numerically using an implicit finite difference scheme that we prove to be convergent and stable. The numerical method proposed can be applied to general reaction diffusion equations, with a variable diffusion coefficient. The results obtained with the single order fractional model, are compared with the original models that use classical derivatives.
Resumo:
This paper proposes a methodology for improvement of energy efficiency in buildings through the innovative simultaneous incorporation of three distinct phase change materials (here termed as hybrid PCM) in plastering mortars for façade walls. The thermal performance of a hybrid PCM mortar was experimentally evaluated by comparing the behaviour of a prototype test cell (including hybrid PCM plastering mortar) subjected to realistic daily temperature profiles, with the behaviour of a similar prototype test cell, in which no PCM was added. A numerical simulation model was employed (using ANSYS-FLUENT) to validate the capacity of simulating temperature evolution within the prototype containing hybrid PCM, as well as to understand the contribution of hybrid PCM to energy efficiency. Incorporation of hybrid PCM into plastering mortars was found to have the potential to significantly reduce heating/cooling temperature demands for maintaining the interior temperature within comfort levels when compared to normal mortars (without PCM), or even mortars comprising a single type of PCM.
Resumo:
Tese de Doutoramento em Ciências (Especialidade em Matemática)
Resumo:
Recently, there has been a growing interest in the field of metabolomics, materialized by a remarkable growth in experimental techniques, available data and related biological applications. Indeed, techniques as Nuclear Magnetic Resonance, Gas or Liquid Chromatography, Mass Spectrometry, Infrared and UV-visible spectroscopies have provided extensive datasets that can help in tasks as biological and biomedical discovery, biotechnology and drug development. However, as it happens with other omics data, the analysis of metabolomics datasets provides multiple challenges, both in terms of methodologies and in the development of appropriate computational tools. Indeed, from the available software tools, none addresses the multiplicity of existing techniques and data analysis tasks. In this work, we make available a novel R package, named specmine, which provides a set of methods for metabolomics data analysis, including data loading in different formats, pre-processing, metabolite identification, univariate and multivariate data analysis, machine learning, and feature selection. Importantly, the implemented methods provide adequate support for the analysis of data from diverse experimental techniques, integrating a large set of functions from several R packages in a powerful, yet simple to use environment. The package, already available in CRAN, is accompanied by a web site where users can deposit datasets, scripts and analysis reports to be shared with the community, promoting the efficient sharing of metabolomics data analysis pipelines.