998 resultados para Radiation-Sensitizing Agents
Resumo:
Purpose: The purpose of this study was to analyze electrocardiographic alterations during dental implant surgeries when local anesthetic agents were used. Materials and Methods: Twenty implants were placed in 18 healthy patients. An electrocardiogram and Wincardio software were used to gather recordings from 12 static leads every 2 minutes, continuously record coronary artery (D2) derivations, and automatically measure the following electrocardiographic parameters: heart rate, duration and amplitude of the P wave, PR segment duration, ST segment deviation, QRS complex duration, and duration of the RR, QT, and corrected QT (QTc) intervals. Results: Analysis of variance of the values obtained at the different stages showed significant differences (P < .05) for the heart rate and for the duration of the RR and QT intervals. The heart rate increased during the anesthesia, incision, and bone drilling stages, reaching a peak during drilling. Duration of the RR and QT intervals decreased during the incision and drilling stages. Among the electrocardiographic parameters individually assessed, several altered values were found for the duration of the P wave, the QRS complex, and the QT and QTc intervals. Sinusal tachycardia and bradycardia, sinusal arrhythmia, supraventricular extrasystole, ventricular extrasystole, and T-wave inversion were detected. Conclusion: Dental implant placement surgery may induce electrocardiographic alterations. The most frequently found arrhythmias were extrasystole and sinusal tachycardia. The anesthesia, incision, and bone drilling stages exhibited the highest heart rate values and the shortest durations of the RR and QT intervals. INT J ORAL MAXILLOFAC IMPLANTS 2009;24:412-418
Resumo:
Objectives: The effects of interactions between cross-linking proanthocyanidins (PA) in polar solvents and type-I collagen of demineralized dentin were investigated. Methods: Three PA-rich extracts, two from grape seed (GSEP and GSES) and one from cocoa (COE), were dissolved (water, ethanol:water and acetone:water) and analyzed for their ability to increase the modulus of elasticity of demineralized dentin. Sound dentin beams (0.5 mm x 1.7 mm x 7 mm) were fully demineralized and divided into 12 groups according to the type of cross-linking agent and solvents used. Specimens were immersed in the respective solutions and tested at baseline, 10, 30, 60, 120 and 240 min. Results: The elastic modulus (EM) of dentin was significantly increased by the PA treatment regardless of time (p < 0.05 for all times). The extracts showed different solubility in different solvents. GSEP showed the highest increase in EM when diluted in distilled water and acetone at all exposure times. Both GSEs showed superior results when diluted in distilled water and after 4 h of treatment, while COE produced strongest enhancement when dissolved in ethanol:water. Conclusions: The results indicates that herbal extraction process and other pharmacognostic parameters have an important influence on extract solubility as well as constitution and, consequently, on the PA-dentin matrix interaction. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The present randomized, controlled prospective study evaluated the histomorphological response of human dental pulps capped with two grey mineral trioxide aggregate (MTA) compounds. Pulp exposures were performed on the occlusal floor of 40 human permanent pre-molars. The pulp was capped either with ProRoot (Dentsply) or MTA-Angelus (Angelus) and restored with zinc oxide eugenol cement. After 30 and 60 days, teeth were extracted and processed for histological examination and the effects on the pulp were scored. The data were subjected to Kruskal-Wallis and Conover tests (alpha = 0.05). In five out of the 40 teeth bacteria were present in pulp tissue. No significant difference was observed between the two materials (P > 0.05) in terms of overall histological features (hard tissue bridge, inflammatory response, giant cells and particles of capping materials). Overall, 94% and 88% of the specimens capped with MTA-Angelus and ProRoot, respectively, showed either total or partial hard tissue bridge formation (P > 0.05). Both commercial materials ProRoot (Dentsply) and MTA-Angelus (Angelus) produced similar responses in the pulp when used for pulp capping in intact, caries-free teeth.
Resumo:
This study evaluated the radiopacity of Portland cement associated with the following radiopacifying agents: bismuth oxide, zinc oxide, lead oxide, bismuth subnitrate, bismuth carbonate, barium sulfate, iodoform, calcium tungstate, and zirconium oxide. A ratio of 20% radiopacifier and 80% white Portland cement by weight was used for analysis. Pure Portland cement and dentin served as controls. Cement/radiopacifier and dentin disc-shaped specimens were fabricated, and radiopacity testing was performed according to the ISO 6876/2001 standard for dental root sealing materials. Using Insight occlusal films, the specimens were radiographed near to a graduated aluminum stepwedge varying from 2 to 16 mm in thickness. The radiographs were digitized and radiopacity compared with the aluminum stepwedge using Digora software (Orion Corporation Soredex, Helsinki, Finland). The radiographic density data were converted into mmAl and analyzed statistically by analysis of variance and Tukey-Kramer test (alpha = 0.05). The radiopacity of pure Portland cement was significantly lower (p < 0.05) than that of dentin, whereas all cement/radiopacifier mixtures were significantly more radiopaque than dentin and Portland cement alone (p < 0.05). Portland cement/bismuth oxide and Portland cement/lead oxide presented the highest radiopacity values and differed significantly from the other materials (p < 0.05), whereas Portland cement/zinc oxide presented the lowest radiopacity values of all mixtures (p < 0.05). All tested substances presented higher radiopacity than that of dentin and may potentially be added to the Portland cement as radiopacifying agents. However, the possible interference of the radiopacifiers with the setting chemistry, biocompatibility, and physical properties of the Portland cement should be further investigated before any clinical recommendation can be done. (J Endod 2009,35:737-740)
Resumo:
Objectives. The objectives of this study were to evaluate the transdentinal cytotoxicity of 10% and 16% carbamide peroxide gel (CP), as well as the ability of the antioxidant, 10% sodium ascorbate (SA), to protect the odontoblasts in culture. Study design. Human dentin discs of 0.5-mm thickness were obtained and were placed into artificial pulp chambers. MDPC-23 odontoblastlike cells were seeded on pulp surface of the discs and the following groups were established: G1-No Treatment (control), G2-10% SA/6hs, G3-10%/CP6hs, G4-10%SA/6hs+10%CP/6hs, G5-16%CP/6hs, and G6-10%SA/6hs+16%CP/6hs. The cell viability was measured by the MTT assay. Results. In groups where 16% CP was used, decreased cell viability was observed. Conversely, the application of 10% SA on the dentin discs, before the use of the CP, reduced the cytotoxic effects of these products on cells. Conclusions. The 16% CP cause a significant decrease in MDPC-23 cell viability and 10% SA was able to partially prevent the toxic effects of CP. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 109: e70-e76)
Resumo:
We investigated the effects of gamma-radiation on cells isolated from the longitudinal smooth muscle layer of the guinea pig ileum, a relatively radioresistant tissue. Single doses (up to 50 Gy) reduced the amount of sarcoplasmatic reticulum and condensed the myofibrils, as shown by electron microscopy 3 days post-irradiation. After that, contractility of smooth muscle strips was reduced. Ca(2+) handling was altered after irradiation, as shown in fura-2 loaded cells, with elevated basal intracellular Ca(2+), reduced amount of intrareticular Ca(2+), and reduced capacitive Ca(2+) entry. Radiation also induced apoptosis, judged from flow cytometry of cells loaded with proprium iodide. Electron microscopy showed that radiation caused condensation of chromatin in dense masses around the nuclear envelope, the presence of apoptotic bodies, fragmentation of the nucleus, detachment of cells from their neighbors, and reductions in cell volume. Radiation also caused activation of caspase 12. Apoptosis was reduced by the administration of the caspase inhibitor Z-Val-Ala-Asp-fluoromethyl-ketone methyl ester (Z-VAD-FIVIK) during the 3 day period after irradiation, and by the chelator of intracellular Ca(2+), 1,2-bis(o-aminophenoxy)ethane-N,N,N`,N`-tetraacetic acid (BAPTA), from 1 h before until 2 h after irradiation. BAPTA also reduced the effects of radiation on contractility, basal intracellular Ca(2+), amount of intrareticular Ca(2+), capacitative Ca(2+) entry, and apoptosis. In conclusion, the effects of gamma radiation on contractility, Ca(2+) handling, and apoptosis appear due to a toxic action of intracellular Ca(2+). Ca(2+)-induced damage to the sarcoplasmatic reticulum seems a key event in impaired Ca(2+) handling and apoptosis induced by gamma-radiation. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Primary teeth were analyzed by micro-SRXRF. The aim of this study was to determine the elemental distribution of lead and calcium in different regions of primary incisor of children living in a notoriously contaminated area (Santo Amaro da Purificacao, Bahia State, Brazil). The measurements were performed in standard geometry of 45 incidence, exciting with a white beam and using a conventional system collimation (orthogonal slits) in the XRF beamline at the Synchrotron Light National Laboratory (Campinas, Brazil). (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
To evaluate the effect of low and highly concentrated bleaching agents on microhardness and surface roughness of bovine enamel and root dentin. According to a randomized complete block design, 100 specimens of each substrate were assigned into five groups to be treated with bleaching agents containing carbamide peroxide (CP) at 10% (CP10); hydrogen peroxide (HP) at 7.5% (HP7.5) or 38% (HP38), or the combination of 18% of HP and 22% of CP (HP18/CP22), for 3 weeks. The control group was left untreated. Specimens were immersed in artificial saliva between bleaching treatments. Knoop surface microhardness (SMH) and average surface roughness (Ra) were measured at baseline and post-bleaching conditions. For enamel, there were differences between bleaching treatments for both SMH and Ra measurements (p = 0.4009 and p = 0.7650, respectively). SMH significantly increased (p < 0.0001), whereas Ra decreased (p = 0.0207) from baseline to post-bleaching condition. For root dentin, the group treated with CP10 exhibited the significantly highest SMH value differing from those groups bleached with HP18/CP22, HP7.5, which did not differ from each other. Application of HP38 resulted in intermediate SMH values. No significant differences were found for Ra (p = 0.5975). Comparing the baseline and post-bleaching conditions, a decrease was observed in SMH (p < 0.0001) and an increase in Ra (p = 0.0063). Bleaching agents with varying concentrations of CP and/or HP are capable of causing mineral loss in root dentin. Enamel does not perform in such bleaching agent-dependent fashion when one considers either hardness or surface roughness evaluations. Bleaching did not alter the enamel microhardness and surface roughness, but in root dentin, microhardness seems to be dependent on the bleaching agent used.
Resumo:
Introduction: The aim of this study was to evaluate the radiopacity of calcium aluminate cement (Endo Binder) with 3 different radiopacifiers (bismuth oxide, zinc oxide, or zirconium oxide) in comparison with gray mineral trioxide aggregate (GMTA), white MTA, and dental structures (enamel and dentin). Methods: Eighteen test specimens of each cement with thicknesses of 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 mm (n = 3) were made by using a stainless steel matrix and were adapted to a standardizing device (8 x 7 cm) with a graduated aluminum stepwedge varying from 2.0-16.0 mm in thickness. To compare the radiopacity of the cements with that of dental structures, slices of first molars with a thickness increasing from 0.5-3.0 mm were obtained and placed on the standardizing device. One occlusal radiograph for each tested cement was taken, with exposure time of 0.1 seconds and focus-film distance of 20 cm. Films were processed in an automatic device, and the mean radiopacity values were obtained by using a photodensitometer. Results: Mean values showed that the thicker the specimen was, the greater was its radiopacity. Only EndoBinder + bismuth oxide (EBBO) and GMTA demonstrated radiopacity values greater than 3.0 mm of the aluminum scale for all thicknesses. When zinc oxide was used as radiopacifier agent, EndoBinder only reached the desired radiopacity with a thickness of 2.0 mm, and with zirconium oxide it was 2.5 mm. Conclusions: Bismuth oxide was the most efficient radiopacifier for EndoBinder, providing adequate radiopacity in all studied thicknesses, as recommended by ISO 6876, being similar to GMTA. (J Endod 2011;37: 67-71)
Resumo:
Differential scanning calorimetric (DSC) and thermogravimetric analysis (TGA) have been used to study the thermal decomposition, the melting behavior and low-temperature transitions of copolymers obtained by radiation-induced grafting of styrene onto poly (tetrafluoroethylene- perfluoropropylvinylether) (PFA) substrates. PFA with different contents of perfluoropropylvinylether (PPVE) as a comonomer have been investigated. A two step degradation pattern was observed from TGA thermograms of all the grafted copolymers, which was attributed to degradation of PSTY followed by the degradation of the PFA backbone at higher temperature. One broad melting peak can be identified for all copolymers, which has two components in the samples with higher PPVE content. The melting peak, crystal-crystal transition and the degree of crystallinity of the grafted copolymers increases with radiation grafting up to 50 kGy, followed by a decrease at higher doses. No such decrease was observed in the ungrafted PFA samples after irradiation. This indicated that the changes in the heats of transitions and crystallinity at low doses are due to the radiation effects on the microstructure of PFA (chain scission), whereas at higher doses the grafted PSTY is the driving force behind these changes. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
A comparative study of the high energy radiation resistance to formation of radicals in two pairs of polymers is reported. In one pair of polymers the phenyl groups containing the imide rings are separated by an ether linkage and in the other pair they are separated by an hexafluoroisopropylidine group. Two of the polymers contained aromatic amine units linked through an ether linkage and the other two polymers contained a trifluoromethyl biphenyl diamine. The polymers were shown to retain a high level of transparency in the visible region following radiolysis to doses as high as 8 Gy. ESR studies of the resistance to radical formation on radiolysis. at 77 K revealed that the polymers containing ether linkages were more stable than their fluorinated analogues, but all were less stable than Kapton (R). (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Recently, Barrett's esophagus and early adenocarcinomas have been detected increasingly frequently in routine follow-up of patients with gastroesophageal reflux. Although surgery is the treatment of choice, some patients are medically unfit for esophagectomy and, in this case, the only alternative curative therapy is radical chemoradiation therapy. In addition, some patients who present with symptoms have small tumors that cannot be localized accurately using routine imaging techniques. This report describes a series of eight patients with small esophageal cancers in whom the tumors were successfully localized following endoscopic injection of contrast, and treated with chemoradiation therapy. The treatment was successful in seven patients. This method of tumor localization demonstrated that conventional techniques are mostly, unreliable when applied to very early cancers.
Resumo:
The drugs which provide specific relief from migraine attacks, the ergopeptides (ergotamine and dihydroergotamine) and the various 'triptans' (notably sumatriptan), are often prescribed for persons already taking various migraine preventative agents, and sometimes drugs for other indications. As a result, migraine-specific drugs may become involved in drug-drug interactions. The migraine-specific drugs all act as agonists at certain subclasses of serotonin (5-hydroxytryptamine; 5-MT) receptor, particularly those of the 5-HT1D subtype, and produce vasoconstriction through these receptor-mediated mechanisms. The oral bioavailabilities of these drugs, particularly those of the ergopeptides, are often incomplete, due to extensive presystemic metabolism. As a result, if migraine-specific agents are coadministered with drugs with vasoconstrictive properties, or with drugs which inhibit the metabolism of the migraine-specific agents, there is a risk of interactions occurring which produce manifestations of excessive vasoconstriction. This can also occur through pharmacodynamic mechanisms, as when ergopeptides or triptans are coadministered with methysergide or propranolol (although a pharmacokinetic element may apply in relation to the latter interaction), or if one migraine-specific agent is used shortly after another. When egopeptide metabolism is inhibited by the presence of macrolide antibacterials, particularly troleandomycin and erythromycin, the resultant interaction can produce ergotism, sometimes leading to gangrene. Similar pharmacokinetic mechanisms, with their vasoconstrictive consequences, probably apply to combination of the ergopeptides with HIV protease inhibitors (indinavir and ritonavir), heparin, cyclosporin or tacrolimus. Inhibition of triptan metabolism by monoamine oxidase A inhibitors, e.g. moclobemide, may raise circulating triptan concentrations, although this does not yet seem to have led to reported clinical problems. Caffeine may cause increased plasma ergotamine concentrations through an as yet inadequately defined pharmacokinetic interaction. However, a direct antimigraine effect of caffeine may contribute to the claimed increased efficacy of ergotamine-caffeine combinations in relieving migraine attacks. Serotonin syndromes have been reported as probable pharmacodynamic consequences of the use of ergots or triptans in persons taking serotonin reuptake inhibitors. There have been two reports of involuntary movement disorders when sumatriptan has been used by patients already taking loxapine. Nearly all the clinically important interactions between the ergopeptide antimigraine agents and currently marketed drugs are likely to have already come to notice. In contrast, new interactions involving the triptans are likely to be recognised as additional members of this family of drugs, with their different patterns of metabolism and pharmacokinetics, are marketed.
Resumo:
Epidermal growth factor (EGF) has been reported to either sensitize or protect cells against ionizing radiation. We report here that EGF increases radiosensitivity in both human fibroblasts and lymphoblasts and down-regulates both ATM (mutated in ataxia-telangiectasia (A-T)) and the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs). No further radiosensitization was observed in A-T cells after pretreatment with EGF. The down-regulation of ATM occurs at the transcriptional level. Concomitant with the down-regulation of ATM, the DNA binding activity of the transcription factor Sp1 decreased. A causal relationship was established between these observations by demonstrating that up-regulation of Sp1 DNA binding activity by granulocyte/macrophage colony-stimulating factor rapidly reversed the EGF-induced decrease in ATM protein and restored radiosensitivity to normal levels. Failure to radiosensitize EGF-treated cells to the same extent as observed for A-T cells can be explained by induction of ATM protein and kinase activity with time post-irradiation. Although ionizing radiation damage to DNA rapidly activates ATM kinase and cell cycle checkpoints, we have provided evidence for the first time that alteration in the amount of ATM protein occurs in response to both EGF and radiation exposure. Taken together these data support complex control of ATM function that has important repercussions for targeting ATM to improve radiotherapeutic benefit.