947 resultados para RP-HPLC
Resumo:
Identification of venomous species of Persian Gulf cone snails and characterization of venom composition and their features is so important from the point of medical importance. Marine cone snails from the genus Conus are estimated to consist of up to 700 species. The venom of cone snails has yielded a rich source of novel neuroactive peptides or conotoxins. The present study was aimed to study the analgesic effect of Persian Gulf Conus textile and its comparison with morphine in mouse model. The specimens of Conus textile were collected of Larak Island from depth of 7 m. The collected samples were transferred to laboratory alive and were stored at -700 c. he veno s ducts were separated and ho ogenized with deionized water he ixture centrifuged at rp for inutes upernatant was considered as extracted veno and stored at - C after lyophylization. The protein profile of venom determined by using SDS-PAGE and HPLC used to investigate the extracted venom and to evaluate the analgesic activity, formalin test was carried out. SDS-PAGE indicated several bands ranged between 6 and 250 kDa. Chromatogram of the venom demonstrated more than 44 large and small fractions. The amount of 10 ng of Conus crude venom and analgesic peptide showed the best anti-pain activity in formalin test. No death observed up to 100 mg/kg, which is 250,000 times higher than the effective dose.Venom characterization of Persian Gulf Conus textile may be of medical importance and potential for new pharmaceutical drugs as well.
Resumo:
采用固相微萃取(SPME)高效液相色谱法(HPLC)同时测定了水中苯酚、4-硝基酚、3-甲基酚、2,4-二氯酚、2,4,6-三氯酚、五氯酚等六种酚类化合物的含量.采用ZORBOX SB-C18柱,以甲醇-1%乙酸水溶液为流动相进行梯度洗脱,流速为1.0 mL/min.紫外检测波长为254、280 nm.六种酚类化合物的检出限为0.31~1.90μg/L,加标回收率为88%~103%.该方法操作简单,能快速、准确地检测水中的酚类化合物.
Resumo:
用高效液相色谱 (HPLC)法研究了武汉东湖周年及围隔实验水柱颗粒物色素的组成及变化。共检测到约 2 0种色素 ,类胡萝卜素含量较高的有硅藻的标志色素岩藻黄素 ,隐藻的异黄素 ,蓝、绿藻的黄体素、玉米黄素及胡萝卜素。东湖叶绿素a的代谢产物主要为脱植基叶绿素a(全湖年均约占叶绿素a的 5 % ) ,而非脱镁叶绿素a或脱镁叶绿酸a。围隔实验结果表明 :叶绿素a与总浮游植物 (r =0 .84) ,叶绿素b与绿藻 (r=0 .77) ,岩藻黄素与硅藻 (r =0 6 8) ,异黄素与隐藻生物量 (r=0 .83
Resumo:
The antibacterial drug furazolidone belonging to the group of nitrofuran antibacterial agents has been widely used as an antibacterial and antiprotozoal feed additive for poultry, cattle, and farmed fish in China. During application a large proportion of the administered drug may reach the environment directly or via feces. Although the use of furazolidone is prohibited in numerous countries, there are indications of its illegal use. It is known that furazolidone can be rapidly metabolized to 3-amino-2-oxazolidinone (AOZ) in the body of the target organism. In this study, a total of 21 fish feed samples, including 17 commercial fish feeds from local markets in China (representing 15 different formulations) and 4 fish feeds obtained from Germany and Turkey, respectively, are analyzed to determine whether the drug is still illegally used or commercially available feeds are contaminated by this drug. High-performance liquid chromatography (HPLC) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) methods have been implemented to determine furazolidone and its metabolite AOZ in fish feeds containing animal protein, respectively. An efficient and convenient cleanup method for the determination of furazolidone in fish feeds is developed, and a simple cleanup method for the determination of AOZ is used. Method recoveries for samples used were determined as 87.7-98.3% for furazolidone at two spike levels of 2.0 and 5.0 ng g(-1) and as 95.6-102.8% for AOZ at spike levels of 0.4 and 0.8 ng g(-1). Limits of detections were 0.4 ng g(-1) for furazolidone and 0.05 ng g(-1) for AOZ. The established methods are therefore suitable for the determination of furazolidone and its metabolite AOZ in fish feeds at trace contamination levels. Using the established methods, all fish feed samples have been proved to be furazolidone negative; however, AOZ is tested in 16 of 17 fish feeds obtained from local markets in the Hubei province of China, with a positive rate as high as 94.1%.
Resumo:
手性是自然界的一种普遍现象,生命现象离不开手性。手性物质在有机化学、药物化学、生物化学以及功能材料等领域显示出诱人的应用前景。外消旋体的拆分是手性研究的重要基础工作。高效液相色谱手性固定相法(HPLC-CSP)在对映体化合物的分离分析和制备方面表现出独特的优势。本论文以旋光性联萘类聚合物和纤维素类衍生物涂敷的手性固定相进行分析级和半制备级色谱拆分,研究和探讨了它们对外消旋化合物的手性识别能力。1. 纤维素类聚合物的合成 将微晶纤维素与相应的酰氯或异氰酸酯反应获得四种纤维系类衍生物,纤维素三苯甲酸酯(CTB)、纤维素三苯基氨基甲酸酯(CTPC)、纤维素三(3,5-二甲基苯基氨基甲酸酯)(CDMPC)、纤维素三联萘甲酸酯(CTBPT)。红外、核磁、元素分析证明原料纤维素已酯化完全。2. 旋光性聚合物手性固定相及HPLC手性柱的制备采用聚合物涂敷硅胶方法制备了四种纤维素类、三种联萘聚酰胺手性固定相和二种半制备级纤维素手性固定相,匀浆法装柱。研究了不同的涂敷液对色谱柱效的影响。3. 旋光性联萘聚酰胺手性柱拆分能力的探讨 在三种由(S)-联萘聚酰胺涂敷的色谱柱上,以多种流动相体系对多种外消旋化合物进行手性折分试验。4. 纤维素类手性分析柱拆分能力的研究 对手性柱进行塔板数和稳定性测试及拆分能力研究。对一些外消旋化合物实现了手性拆分。由实验结果可以看出,以CDMPC涂敷的手性柱对多种外消旋化合(包括药物)具有手性拆分能力,具分离度较高。5. 半制备级拆分 对三种外消旋药物在纤维素半制备色谱柱上进行了半制备级拆分。我们在分析型色谱柱进行了流动相条件的选择,将优化后的分析条件直接放大到半制备色谱中,不仅节省了模索条件的时间,而且可以节省大量的流动相,预计一天内所能达到的对外消旋体最大拆分量可达克级以上。6. 进行了HPLC-UV-旋光仪的联用检测研究,实现了在线流动过程中旋光曲线的绘制。