278 resultados para RAF


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) syndrome is a complex immunologic disease caused by mutation of the autoimmune regulator (AIRE) gene. Autoimmunity in patients with APECED syndrome has been shown to result from deficiency of AIRE function in transcriptional regulation of thymic peripheral tissue antigens, which leads to defective T-cell negative selection. Candidal susceptibility in patients with APECED syndrome is thought to result from aberrant adaptive immunity. Objective: To determine whether AIRE could function in anticandidal innate immune signaling, we investigated an extrathymic role for AIRE in the immune recognition of beta-glucan through the Dectin-1 pathway, which is required for defense against Candida species. Methods: Innate immune signaling through the Dectin-1 pathway was assessed in both PBMCs from patients with APECED syndrome and a monocytic cell line. Subcellular localization of AIRE was assessed by using confocal microscopy. Results: PBMCs from patients with APECED syndrome had reduced TNF-alpha responses after Dectin-1 ligation but in part used a Raf-1-mediated pathway to preserve function. In the THP-1 human monocytic cell line, reducing AIRE expression resulted in significantly decreased TNF-a release after Dectin-1 ligation. AIRE formed a transient complex with the known Dectin-1 pathway components phosphorylated spleen tyrosine kinase and caspase recruitment domain-containing protein 9 after receptor ligation and localized with Dectin-1 at the cell membrane. Conclusion: AIRE can participate in the Dectin-1 signaling pathway, indicating a novel extrathymic role for AIRE and a defect that likely contributes to fungal susceptibility in patients with APECED syndrome. (J Allergy Clin Immunol 2012;129:464-72.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gravena, R., Filho, R. V., Alves, P. L. C. A., Mazzafera, P. and Gravena, A. R. 2012. Glyphosate has low toxicity to citrus plants growing in the field. Can. J. Plant Sci. 92: 119-127. There has been controversy over whether glyphosate used for weed management in citrus fields causes significant toxicity to citrus plants. Glyphosate may be toxic to non-target plants exposed to accidental application or drift. This work evaluated glyphosate toxicity in plants of Valencia citrus (Citrus sinensis. L. Osbeck) grafted onto 'Rangpur lime' (Citrus limonia L. Osbeck) and citrumelo 'Swingle' (Poncirus trifoliata (L.) Raf x Citrus paradisi Mad) by trunk- or foliar-directed herbicide applications under field conditions. In the first experiment, glyphosate was sprayed at rates of 0, 90, 180, 260, 540, 1080 and 2160 g a.e. ha(-1) directly on the trunk to a height of 5 cm above the grafting region. In the second experiment, glyphosate was sprayed on the plant canopies at rates of 0, 0.036, 0.36, 3.6, 36, 360 and 720 g a.e. ha(-1). There was no visual damage caused by glyphosate applied directly to the trunk, but the plants were affected by glyphosate sprayed directly on the canopies at rates over 360 g a.e. ha(-1). The main symptom was observed in the new shoots formed after the application, indicating an effect on meristems. Little or no effect was observed in mature leaves. Eight days after application the levels of shikimate, total free amino acids and total phenolic compounds were unaffected. All plants affected by glyphosate recovered between 6 and 12 mo after the treatments. Therefore, despite some transient symptoms Valencia citrus grafted onto 'Rangpur lime' and citrumelo 'Swingle' were tolerant to glyphosate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DA SILVA, N. D. JR, T. FERNANDES, U. P. R. SOCI, A. W. A. MONTEIRO, M. I. PHILLIPS, and E. M. DE OLIVEIRA. Swimming Training in Rats Increases Cardiac MicroRNA-126 Expression and Angiogenesis. Med. Sci. Sports Exerc., Vol. 44, No. 8, pp. 1453-1462, 2012. Purpose: MicroRNA (miRNA)-126 is angiogenic and has two validated targets: Sprouty-related protein 1 (Spred-1) and phosphoinositol-3 kinase regulatory subunit 2 (PI3KR2), negative regulators of angiogenesis by VEGF pathway inhibition. We investigated the role of swimming training on cardiac miRNA-126 expression related to angiogenesis. Methods: Female Wistar rats were assigned to three groups: sedentary (S), training 1 (T1, moderate volume), and training 2 (T2, high volume). T1 consisted of 60 min.d(-1) of swimming, five times per week for 10 wk with 5% body overload. T2 consisted of the same protocol of T1 until the eighth week; in the ninth week, rats trained for two times a day, and in the 10th week, rats trained for three times a day. MiRNA and PI3KR2 gene expression analysis was performed by real-time polymerase chain reaction in heart muscle. We assessed markers of training, the cardiac capillary-fiber ratio, cardiac protein expression of VEGF, Spred-1, Raf-1/ERK 1/2, and PI3K/Akt/eNOS. Results: The cardiac capillary-fiber ratio increased in T1 (58%) and T2 (101%) compared with S. VEGF protein expression was increased 42% in T1 and 108% in T2. Cardiac miRNA-126 expression increased 26% (T1) and 42% (T2) compared with S, correlated with angiogenesis. The miRNA-126 target Spred-1 protein level decreased 41% (T1) and 39% (T2), which consequently favored an increase in angiogenic signaling pathway Raf-1/ERK 1/2. On the other hand, the gene expression of PI3KR2, the other miRNA-126 target, was reduced 39% (T1) and 78% (T2), and there was an increase in protein expression of components of the PI3K/Akt/eNOS signaling pathway in the trained groups. Conclusions: This study showed that aerobic training promotes an increase in the expression of miRNA-126 and that this may be related to exercise-induced cardiac angiogenesis, by indirect regulation of the VEGF pathway and direct regulation of its targets that converged in an increase in angiogenic pathways, such as MAPK and PI3K/Akt/eNOS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein disulfide isomerase (PDI) and its homologs are oxidoreductases facilitating protein folding in the ER. Endo-PDI (also termed ERp46) is highly expressed in endothelial cells. It belongs to the PDI family but its physiological function is largely unknown. We studied the role of Endo-PDI in endothelial angiogenic responses. Stimulation of human umbilical vein endothelial cells (with TNFα (10ng/ml) increased ERK1/2 phosphorylation. This effect was largely attenuated by Endo-PDI siRNA, whereas JNK and p38 MAP kinase phosphorylation was Endo-PDI independent. Similarly, TNFα-stimulated NF-κB signaling determined by IκBα degradation as well as TNFα-induced ICAM expression was unaffected by Endo-PDI siRNA. The action of Endo-PDI was not mediated by extracellular thiol exchange or cell surface PDI as demonstrated by nonpermeative inhibitors and PDI-neutralizing antibody. Moreover, exogenously added PDI failed to restore ERK1/2 activation after Endo-PDI knockdown. This suggests that Endo-PDI acts intracellularly potentially by maintaining the Ras/Raf/MEK/ERK pathway. Indeed, knockdown of Endo-PDI attenuated Ras activation measured by G-LISA and Raf phosphorylation. ERK activation influences gene expression by the transcriptional factor AP-1, which controls MMP-9 and cathepsin B, two proteases required for angiogenesis. TNFα-stimulated MMP-9 and cathepsin B induction was reduced by silencing of Endo-PDI. Accordingly, inhibition of cathepsin B or Endo-PDI siRNA blocked the TNFα-stimulated angiogenic response in the spheroid outgrowth assays. Moreover ex vivo tube formation and in vivo Matrigel angiogenesis in response to TNFα were attenuated by Endo-PDI siRNA. In conclusion, our study establishes Endo-PDI as a novel, important mediator of AP-1-driven gene expression and endothelial angiogenic function

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Es ist bekannt, dass die Überexpression eines einzigen Onkogens im Tumorgewebe einen maligneren Phänotyp zur Folge haben kann. Ein Beispiel hierfür ist die Rezeptortyrosinkinase HER-2. Besonders in Mamma- und Ovarialkarzinomen tritt häufig eine HER-2 Überexpression auf, die mit einer schlechteren Prognose für die Patientinnen einhergeht. Die HER-2 blockierende Therapie mit Trastuzumab (Herceptin®) konnte zu einer signifikanten Verbesserung der Überlebenszeit bei Patientinnen mit metastasierendem Mammakarzinom führen. Es ist deshalb von großem Interesse herauszufinden, ob ein Tumor durch gezielte Blockade eines bestimmten Onkogens sein tumorigenes Potential verlieren kann, und dadurch das Tumorwachstum zumindest zeitweise unterbunden wird. Die Frage ist also, ob ein Tumor reversibel sein kann, wenn die Expression seiner Onkogene blockiert wird. Frühere Arbeiten meiner Arbeitsgruppe haben gezeigt, dass Tumore, die konditional humanes HER-2 exprimierten, nach Ausschalten von HER-2 tatsächlich in Remission gingen, d.h. reversibel waren. Tumorgrößenabhängig konnte sogar eine vollständige Tumorremission beobachtet werden. Die vorliegende Arbeit soll nun helfen, die beobachtete Remission nach Ausschalten von HER-2 besser verstehen zu können. Von Interesse sind dabei vor allem die molekularen Mechanismen, die in dem Tumor nach Ausschalten der HER-2 Expression ablaufen. Die konditionale Expression von HER-2 wurde mit Hilfe des TET-OFF Systems in NIH3T3 Mausfibroblasten erreicht. Mit dieser Technik wurde ein Maustumormodell etabliert, das ermöglichte, die Veränderungen in den Tumoren nach Ausschalten von HER-2 zu untersuchen. Ein besonderes Augenmerk wurde dabei auf zwei der durch HER-2 vermittelten Signalwege gerichtet, den Ras-MAP Kinase Signalweg und die Aktivierung von Akt über die Phosphoinositol-3 Kinase. Beide wurden nach Ausschalten der HER-2 Expression deaktiviert. Um herausfinden zu können, welcher der beiden Wege eine wichtigere Rolle bei der Tumorremission spielt, wurden in der vorliegenden Arbeit zwei weitere Maustumormodelle zur konditionalen Expression von humanem H-Ras bzw. einer Form des humanen c-Raf-1 (BXB-Raf1) etabliert. Die Modelle funktionierten auf dieselbe Weise wie das HER-2 Maustumormodell und es wurden auch dieselben Faktoren untersucht. Ras und Raf sind Mitglieder des Ras-MAP Kinase Signalweges. Raf ist aber im Gegensatz zu HER-2 und Ras nicht in der Lage, Akt zu aktivieren. Durch Vergleich der Ergebnisse der drei Maustumormodelle war es deshalb möglich zu differenzieren, ob Einflüsse auf die Tumorentwicklung über denn Ras-MAP Kinase oder den PI3K/Akt Signalweg vermittelt wurden. Auch Ausschalten von H-Ras oder BXB-Raf1 führte zu einer raschen Tumorremission. Damit wurde erneut die Frage nach der Reversibilität eines Tumors beantwortet. Ob die Remission auf einer Induktion von Apoptose beruhte, konnte nicht endgültig geklärt werden, da es zwar nach Ausschalten von HER-2 zu einer Erhöhung der Apoptoserate kam, nicht jedoch nach Ausschalten von H-Ras oder BXB-Raf1. Aufgrund der vorhandenen Ergebnisse wird vermutet, dass es zu einer Störung des Gleichgewichtes zwischen proliferationsfördernden und apoptotischen Faktoren nach Ausschalten der Onkogene kam. Die in den Tumoren vorhandene Spontanapoptose könnte dann ausreichen, den Prozess der Tumorremission auszulösen. Die Untersuchungen haben gezeigt, dass ERK bzw. der Ras-MAP Kinase Signalweg die bedeutendere Rolle bei der Tumorremission spielte. Zum einen wurde dies belegt durch die Beobachtung, dass die Tumorverläufe von HER-2 und BXB-Raf1 nahezu identisch waren. Zum anderen kam es in allen drei Modellen zu einer Dephosphorylierung von ERK, die der Tumorremission vorausging. Akt schien dagegen keine Rolle zu spielen, da das Ausschalten der HER-2, H-Ras oder BXB-Raf1 Expression zu keiner einheitlichen Veränderung des Posphorylierungsgrades von Akt führte. Demnach ist die Blockade des Ras-MAP Kinase Signalweges, der hauptsächlich proliferationsfördernde Eigenschaften besitzt, wichtiger für die Tumorremission als die Blockade des PI3K/Akt Signalweges, der hauptsächlich anti-apoptotische Eigenschaften vermittelt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neoplastic overgrowth depends on the cooperation of several mutations ultimately leading to major rearrangements in cellular behaviour. The molecular crosstalk occurring between precancerous and normal cells strongly influences the early steps of the tumourigenic process as well as later stages of the disease. Precancerous cells are often removed by cell death from normal tissues but the mechanisms responsible for such fundamental safeguard processes remain in part elusive. To gain insight into these phenomena I took advantage of the clonal analysis methods available in Drosophila for studying the phenotypes due to loss of function of the neoplastic tumour suppressor lethal giant larvae (lgl). I found that lgl mutant cells growing in wild-type imaginal wing discs are subject to the phenomenon of cell competition and are eliminated by JNK-dependent cell death because they express very low levels of dMyc oncoprotein compared to those in the surrounding tissue. Indeed, in non-competitive backgrounds lgl mutant clones are able to overgrow and upregulate dMyc, overwhelming the neighbouring tissue and forming tumourous masses that display several cancer hallmarks. These phenotypes are completely abolished by reducing dMyc abundance within mutant cells while increasing it in lgl clones growing in a competitive context re-establishes their tumourigenic potential. Similarly, the neoplastic growth observed upon the oncogenic cooperation between lgl mutation and activated Ras/Raf/MAPK signalling was found to be characterised by and dependent on the ability of cancerous cells to upregulate dMyc with respect to the adjacent normal tissue, through both transcriptional and post-transcriptional mechanisms, thereby confirming its key role in lgl-induced tumourigenesis. These results provide first evidence that the dMyc oncoprotein is required in lgl mutant tissue to promote invasive overgrowth in developing and adult epithelial tissues and that dMyc abundance inside versus outside lgl mutant clones plays a key role in driving neoplastic overgrowth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RAF is a bio-energetic descriptive model integrates with MAD model to support Integrated Farm Management. RAF model aimed to enhancing economical, social and environmental sustainability of farm production in terms of energy via convert energy crops and animal manure to biogas and digestate (bio-fertilizers) by anaerobic digestion technologies, growing and breeding practices. The user defines farm structure in terms of present crops, livestock and market prices and RAF model investigates the possibilities of establish on-farm biogas system (different anaerobic digestion technologies proposed for different scales of farms in terms of energy requirements) according to budget and sustainability constraints to reduce the dependence on fossil fuels. The objective function of RAF (Z) is optimizing the total net income of farm (maximizing income and minimizing costs) for whole period which is considered by the analysis. The main results of this study refers to the possibility of enhancing the exploitation of the available Italian potentials of biogas production from on-farm production of energy crops and livestock manure feedstock by using the developed mathematical model RAF integrates with MAD to presents reliable reconcile between farm size, farm structure and on-farm biogas systems technologies applied to support selection, applying and operating of appropriate biogas technology at any farm under Italian conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HP802-247 is a new-generation, allogeneic tissue engineering product consisting of growth-arrested, human keratinocytes (K) and fibroblasts (F) delivered in a fibrin matrix by a spray device.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sorafenib targets the Raf/mitogen-activated protein kinase, VEGF, and platelet-derived growth factor pathways and prolongs survival patients in advanced hepatocellular carcinoma (HCC). Everolimus inhibits the mammalian target of rapamycin, a kinase overactive in HCC. To investigate whether the antitumor effects of these agents are additive, we compared a combined and sequential treatment regimen of everolimus and sorafenib with monotherapy. After hepatic implantation of Morris Hepatoma (MH) cells, rats were randomly allocated to everolimus (5 mg/kg, 2×/week), sorafenib (7.5 mg/kg/d), combined everolimus and sorafenib, sequential sorafenib (2 weeks) then everolimus (3 weeks), or control groups. MRI quantified tumor volumes. Erk1/2, 4E-BP1, and their phosphorylated forms were quantified by immunoblotting. Angiogenesis was assessed in vitro by aortic ring and tube formation assays, and in vivo with Vegf-a mRNA and vascular casts. After 35 days, tumor volumes were reduced by 60%, 85%, and 55%, relative to controls, in everolimus, the combination, and sequential groups, respectively (P < 0.01). Survival was longest in the combination group (P < 0.001). Phosphorylation of 4E-BP1 and Erk1/2 decreased after everolimus and sorafenib, respectively. Angiogenesis decreased after all treatments (P < 0.05), although sorafenib increased Vegf-a mRNA in liver tumors. Vessel sprouting was abundant in control tumors, lower after sorafenib, and absent after the combination. Intussusceptive angiogenic transluminal pillars failed to coalesce after the combination. Combined treatment with everolimus and sorafenib exerts a stronger antitumoral effect on MH tumors than monotherapy. Everolimus retains antitumoral properties when administered sequentially after sorafenib. This supports the clinical use of everolimus in HCC, both in combination with sorafenib or after sorafenib.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hepatocellular carcinoma (HCC) is a common cause of cancer-related death. Sorafenib prolongs survival of patients with advanced disease and is approved for the systemic treatment of unresectable HCC. It possesses antiangiogenic and antiproliferative properties by way of inhibition of the receptor tyrosine kinases vascular endothelial growth factor receptor 2 (VEGFR-2) and platelet-derived growth factor receptor-beta 1/2 (PDGFR-β) and the kinase RAF. Sorafenib represents a candidate compound for adjuvant therapy in HCC patients. The aim of our study was to investigate whether sorafenib affects liver regeneration. C57BL6 mice received sorafenib orally at 30 mg/kg/day or its vehicle either for 14 days until the day before hepatectomy or starting the day after surgery or both. Animals were sacrificed 24, 72, and 120 hours after hepatectomy. Liver regeneration was calculated as a percent of initial liver weight. Bromodeoxyuridine (BrdU) incorporation and phospho-extracellular signal-regulated kinase (pERK1/2) were determined by immunohistochemistry on liver sections. VEGF-A, PDGF-BB, and hepatocyte growth factor (HGF) levels were measured in liver tissue homogenates. Histological analysis of scar tissue was performed. Treatment stopped 1 day before surgery had no impact on liver regeneration. Continuous sorafenib treatment and treatment started 1 day after surgery had statistically significant effects on liver regeneration at 120 hours compared to vehicle-treated control animals (72% ± 12 versus control 88% ± 15 and 70% ± 13 versus control 86% ± 5 at 120 hours, both P ≤ 0.02). BrdU incorporation showed decreased numbers of positive nuclei in both groups receiving sorafenib after surgery. Phospho-ERK levels were reduced in sorafenib-treated animals. An increase of VEGF-A levels was observed in mice receiving sorafenib. Wound-healing complications were observed in animals receiving sorafenib after surgery and confirmed on histological sections. CONCLUSION: This preclinical study shows that sorafenib did not impact on liver regeneration when ceased before surgery; however, administration after hepatectomy affected late liver regeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

FGFRL1 is a member of the fibroblast growth factor receptor family. It plays an essential role during branching morphogenesis of the metanephric kidneys, as mice with a targeted deletion of the Fgfrl1 gene show severe kidney dysplasia. Here we used the yeast two-hybrid system to demonstrate that FGFRL1 binds with its C-terminal, histidine-rich domain to Spred1 and to other proteins of the Sprouty/Spred family. Members of this family are known to act as negative regulators of the Ras/Raf/Erk signaling pathway. Truncation experiments further showed that FGFRL1 interacts with the SPR domain of Spred1, a domain that is shared by all members of the Sprouty/Spred family. The interaction could be verified by coprecipitation of the interaction partners from solution and by codistribution at the cell membrane of COS1 and HEK293 cells. Interestingly, Spred1 increased the retention time of FGFRL1 at the plasma membrane where the receptor might interact with ligands. FGFRL1 and members of the Sprouty/Spred family belong to the FGF synexpression group, which also includes FGF3, FGF8, Sef and Isthmin. It is conceivable that FGFRL1, Sef and some Sprouty/Spred proteins work in concert to control growth factor signaling during branching morphogenesis of the kidneys and other organs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: FMS-like tyrosine kinase 3 (FLT3) is a class III receptor tyrosine kinase involved in hematopoietic progenitor cell development. Mutations of FLT3 have been reported in about a third of patients with acute myeloid leukemia (AML), and inhibitors of FLT3 are of clinical interest. Sorafenib is an orally active multikinase inhibitor with potent activity against FLT3 and the Raf/ERK/MEK kinase pathway. METHODS: We studied the patterns of molecular response and relapse in 18 patients with mutated FLT3 treated with the combination of sorafenib, idarubicin, and cytarabine. RESULTS: The median follow-up was 9 months. Sixteen patients achieved complete remission (CR), and the other 2 patients achieved CR but lacked platelet recovery for an overall response rate of 100%. Ten patients had their FLT3-mutated clone eradicated, with 6 patients who showed some residual FLT3-mutated cells, and 2 patients who showed persistent FLT3-mutated cells. The elimination of FLT3-mutated population at the time of morphologic CR, however, was not predictive of relapse. After a median follow-up of 9 months (range, 1-16 months), 10 (55%) patients had relapsed, with a median CR duration of 8.8 months (range, 1-9.5 months). By DNA sequencing, there was no evidence of an acquired FLT3 point mutation at the time of relapse in 7 patients tested, which suggested the presence of other mechanisms of sorafenib resistance. CONCLUSION: Sorafenib, combined with chemotherapy, is effective in attaining CR, but relapses still occur.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alterations of the epidermal growth factor receptor (EGFR) can be observed in a significant subset of esophageal adenocarcinomas (EACs), and targeted therapy against EGFR may become an interesting approach for the treatment of these tumors. Mutations of KRAS, NRAS, BRAF, and phosphatidylinositol-3-kinase catalytic subunit (PIK3CA) and deregulation of PTEN expression influence the responsiveness against anti-EGFR therapy in colorectal carcinomas. We investigated the prevalence of these events in a collection of 117 primary resected EACs, correlated the findings with EGFR expression and amplification, and determined their clinicopathologic impact. KRAS mutations were detected in 4 (3%) of 117 tumors (3× G12D and 1 G12V mutation). One tumor had a PIK3CA E545K mutation. Neither NRAS nor BRAF mutations were detected. Sixteen (14%) of 117 cases were negative for PTEN expression, determined by immunohistochemistry. Loss of PTEN was observed predominantly in advanced tumor stages (P = .004). There was no association between PTEN and EGFR status. Loss of PTEN was associated with shorter overall and disease-free survival (P < .001 each) and also an independent prognostic factor in multivariate analysis (P = .015). EGFR status had no prognostic impact in this case collection. In summary, loss of PTEN can be detected in a significant subset of EAC and is associated with an aggressive phenotype. Therefore, PTEN may be useful as a prognostic biomarker. In contrast, mutations of RAS/RAF/PIK3CA appear only very rarely, if at all, in EAC. A possible predictive role of PTEN in anti-EGFR treatment warrants further investigations, whereas determination of RAS/RAF/PIK3CA mutations may only have a minor impact in this context.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The means through which the nervous system perceives its environment is one of the most fascinating questions in contemporary science. Our endeavors to comprehend the principles of neural science provide an instance of how biological processes may inspire novel methods in mathematical modeling and engineering. The application ofmathematical models towards understanding neural signals and systems represents a vibrant field of research that has spanned over half a century. During this period, multiple approaches to neuronal modeling have been adopted, and each approach is adept at elucidating a specific aspect of nervous system function. Thus while bio-physical models have strived to comprehend the dynamics of actual physical processes occurring within a nerve cell, the phenomenological approach has conceived models that relate the ionic properties of nerve cells to transitions in neural activity. Further-more, the field of neural networks has endeavored to explore how distributed parallel processing systems may become capable of storing memory. Through this project, we strive to explore how some of the insights gained from biophysical neuronal modeling may be incorporated within the field of neural net-works. We specifically study the capabilities of a simple neural model, the Resonate-and-Fire (RAF) neuron, whose derivation is inspired by biophysical neural modeling. While reflecting further biological plausibility, the RAF neuron is also analytically tractable, and thus may be implemented within neural networks. In the following thesis, we provide a brief overview of the different approaches that have been adopted towards comprehending the properties of nerve cells, along with the framework under which our specific neuron model relates to the field of neuronal modeling. Subsequently, we explore some of the time-dependent neurocomputational capabilities of the RAF neuron, and we utilize the model to classify logic gates, and solve the classic XOR problem. Finally we explore how the resonate-and-fire neuron may be implemented within neural networks, and how such a network could be adapted through the temporal backpropagation algorithm.