373 resultados para Régression logistique pénalisée
Resumo:
Objectifs: Etude prospective sur l'efficacité de la chimio-perfusion super-sélective avec Melphalan dans l'artère ophtalmique en tant qu'agent tumoricide chez l'enfantatteint de rétinoblastome avancé, pour éviter l'énucléation chirurgicale et/ou la radiothérapie externe. Matériels et méthodes: 19 enfants (âge moyen 25 mois) atteints de rétinoblastome de groupe D ont reçu 1 à 3 séances d'administration intra-artérielle de Melphalan (0,35 mg/kg) dans l'artère ophtalmique sous anesthésie générale. Au total 48 procédures ont été réalisées. Chaque séance était associée à une injection intra-vitréenne deMelphalan, ainsi qu'à une thermothérapie et/ou une cryothérapie. Résultats: Le traitement a été effectué avec succès chez 17/19 enfants avec une régression importante du volume tumoral. L'énucléation ainsi que la radiothérapie externeont pu être évitées dans 15/17 enfants, sur un suivi moyen d'une année. Aucune complication systémique ou thromboembolique n'a été observée. Lescomplications locales ont comporté 2 décollements de la rétine, 5 oedèmes conjonctivaux et palpébraux, 1 cas de pigmentation cutanée locale, 1 vasospasmetransitoire de l'artère carotide interne et 2 cas d'artériopathie occlusive choroïdienne sectorielle . Conclusion: L'administration intra-artérielle de Melphalan s'avère être très efficace dans les cas avancés de rétinoblastome chez l'enfant, aussi bien comme techniquecurative que pour éviter l'énucléation et/ou la radiothérapie externe.
Resumo:
RESUME Les membranes néovasculaires (MNV) compliquent diverses pathologies ophtalmiques. Elles sont à l'origine d'une importante baisse de l'acuité visuelle lorsque elles se situent à proximité de la fovéa. A l'heure actuelle, peu de données relatives à leur association aux pathologies inflammatoires de l'oeil (uvéites) existent. Dans ce travail, la fréquence de MNV a été évaluée parmi 643 patients avec uvéite. Leur impact sur l'acuité visuelle ainsi que le pronostic en fonction des différents traitements effectués ont été étudiés. Les dossiers des 643 patients souffrant d'uvéite ont été étudiés. Les patients présentant une MNV ont été classés en trois groupes en fonction de l'importance de l'inflammation intraoculaire: élevée (2+ cellules dans le vitré), moyenne (1/2+ à 1+ cellules dans le vitré) ou absente (0 cellules dans le vitré). L'évolution de l'acuité visuelle fut considérée comme favorable (+VA: maintient de l'acuité visuelle ou gain d'une ou plusieurs lignes de Snellen) ou défavorable (-VA: perte d'une ou plusieurs lignes Snellen). Chez 9 patients, le traitement instauré a consisté, initialement, en l'administration orale de corticostéroïdes (CST) à haute dose qui, dans le cas d'évolution favorable (-FVA ou régression angiographique de la MNV), était arrêtée en doses dégressives. Dans les évolutions défavorables (-VA ou progression angiographique de la MNV), les CST étaient maintenus à dose moyenne en complémentation d'un traitement par thérapie laser (photothérapie dynamique (PDT), thermothérapie transpupillaire (TTT) ou laser Argon). Ce protocole thérapeutique ne fut appliqué chez trois patients en raison de la non disponibilité de PDT ou d'un diagnostic manqué d'uvéite. Douze patients sur 643 avec uvéite ont présenté une MNV. L'impact visuel moyen était de 4.5 lignes de Snellen et le temps moyen de suivi était de 19.5 mois. Deux patients avec inflammation intraoculaire élevée ont évolué favorablement sous CST seuls. Huit patients avec inflammation intraoculaire moyenne ont évolué favorablement sous CST seuls chez trois patients, alors que quatre patients ont nécessité une thérapie laser additionnelle. Le dernier patient ne fut traité que par thérapie laser sans CST (diagnostic manqué d'uvéite). Deux patients sans inflammation intraoculaire ont eu un pronostic défavorable sous CST seuls (pas d'autre alternative thérapeutique). Notre étude a démontré que les MNV sont une complication rare de l'uvéite qui, après traitement adéquat, ont un pronostic visuel relativement favorable. Bien que les CST semblent être la première modalité thérapeutique, les traitements laser devraient être adoptés tôt dans les situations d'inflammation intraoculaire moyenne ou absente.
Resumo:
A group of agents located along a river have quasi-linear preferences over water and money. We ask how the water should be allocated and what money transfers should be performed. We are interested in efficiency, stability (in the sense of the core), and fairness (in a sense to be defined). We first show that the cooperative game associated with our problem is convex : its core is therefore large and easily described. Next, we propose the following fairness requirement : no group of agents should enjoy a welfare higher than what it could achieve in the absence of the remaining agents. We prove that only one welfare vector in the core satisfies this condition : it is the marginal contribution vector corresponding to the ordering of the agents along the river. We discuss how it could be decentralized or implemented.
Resumo:
In the context of multivariate linear regression (MLR) models, it is well known that commonly employed asymptotic test criteria are seriously biased towards overrejection. In this paper, we propose a general method for constructing exact tests of possibly nonlinear hypotheses on the coefficients of MLR systems. For the case of uniform linear hypotheses, we present exact distributional invariance results concerning several standard test criteria. These include Wilks' likelihood ratio (LR) criterion as well as trace and maximum root criteria. The normality assumption is not necessary for most of the results to hold. Implications for inference are two-fold. First, invariance to nuisance parameters entails that the technique of Monte Carlo tests can be applied on all these statistics to obtain exact tests of uniform linear hypotheses. Second, the invariance property of the latter statistic is exploited to derive general nuisance-parameter-free bounds on the distribution of the LR statistic for arbitrary hypotheses. Even though it may be difficult to compute these bounds analytically, they can easily be simulated, hence yielding exact bounds Monte Carlo tests. Illustrative simulation experiments show that the bounds are sufficiently tight to provide conclusive results with a high probability. Our findings illustrate the value of the bounds as a tool to be used in conjunction with more traditional simulation-based test methods (e.g., the parametric bootstrap) which may be applied when the bounds are not conclusive.
Resumo:
This paper proposes finite-sample procedures for testing the SURE specification in multi-equation regression models, i.e. whether the disturbances in different equations are contemporaneously uncorrelated or not. We apply the technique of Monte Carlo (MC) tests [Dwass (1957), Barnard (1963)] to obtain exact tests based on standard LR and LM zero correlation tests. We also suggest a MC quasi-LR (QLR) test based on feasible generalized least squares (FGLS). We show that the latter statistics are pivotal under the null, which provides the justification for applying MC tests. Furthermore, we extend the exact independence test proposed by Harvey and Phillips (1982) to the multi-equation framework. Specifically, we introduce several induced tests based on a set of simultaneous Harvey/Phillips-type tests and suggest a simulation-based solution to the associated combination problem. The properties of the proposed tests are studied in a Monte Carlo experiment which shows that standard asymptotic tests exhibit important size distortions, while MC tests achieve complete size control and display good power. Moreover, MC-QLR tests performed best in terms of power, a result of interest from the point of view of simulation-based tests. The power of the MC induced tests improves appreciably in comparison to standard Bonferroni tests and, in certain cases, outperforms the likelihood-based MC tests. The tests are applied to data used by Fischer (1993) to analyze the macroeconomic determinants of growth.
Resumo:
In this paper, we develop finite-sample inference procedures for stationary and nonstationary autoregressive (AR) models. The method is based on special properties of Markov processes and a split-sample technique. The results on Markovian processes (intercalary independence and truncation) only require the existence of conditional densities. They are proved for possibly nonstationary and/or non-Gaussian multivariate Markov processes. In the context of a linear regression model with AR(1) errors, we show how these results can be used to simplify the distributional properties of the model by conditioning a subset of the data on the remaining observations. This transformation leads to a new model which has the form of a two-sided autoregression to which standard classical linear regression inference techniques can be applied. We show how to derive tests and confidence sets for the mean and/or autoregressive parameters of the model. We also develop a test on the order of an autoregression. We show that a combination of subsample-based inferences can improve the performance of the procedure. An application to U.S. domestic investment data illustrates the method.
Resumo:
A wide range of tests for heteroskedasticity have been proposed in the econometric and statistics literature. Although a few exact homoskedasticity tests are available, the commonly employed procedures are quite generally based on asymptotic approximations which may not provide good size control in finite samples. There has been a number of recent studies that seek to improve the reliability of common heteroskedasticity tests using Edgeworth, Bartlett, jackknife and bootstrap methods. Yet the latter remain approximate. In this paper, we describe a solution to the problem of controlling the size of homoskedasticity tests in linear regression contexts. We study procedures based on the standard test statistics [e.g., the Goldfeld-Quandt, Glejser, Bartlett, Cochran, Hartley, Breusch-Pagan-Godfrey, White and Szroeter criteria] as well as tests for autoregressive conditional heteroskedasticity (ARCH-type models). We also suggest several extensions of the existing procedures (sup-type of combined test statistics) to allow for unknown breakpoints in the error variance. We exploit the technique of Monte Carlo tests to obtain provably exact p-values, for both the standard and the new tests suggested. We show that the MC test procedure conveniently solves the intractable null distribution problem, in particular those raised by the sup-type and combined test statistics as well as (when relevant) unidentified nuisance parameter problems under the null hypothesis. The method proposed works in exactly the same way with both Gaussian and non-Gaussian disturbance distributions [such as heavy-tailed or stable distributions]. The performance of the procedures is examined by simulation. The Monte Carlo experiments conducted focus on : (1) ARCH, GARCH, and ARCH-in-mean alternatives; (2) the case where the variance increases monotonically with : (i) one exogenous variable, and (ii) the mean of the dependent variable; (3) grouped heteroskedasticity; (4) breaks in variance at unknown points. We find that the proposed tests achieve perfect size control and have good power.
Resumo:
The focus of the paper is the nonparametric estimation of an instrumental regression function P defined by conditional moment restrictions stemming from a structural econometric model : E[Y-P(Z)|W]=0 and involving endogenous variables Y and Z and instruments W. The function P is the solution of an ill-posed inverse problem and we propose an estimation procedure based on Tikhonov regularization. The paper analyses identification and overidentification of this model and presents asymptotic properties of the estimated nonparametric instrumental regression function.
Resumo:
In a recent paper, Bai and Perron (1998) considered theoretical issues related to the limiting distribution of estimators and test statistics in the linear model with multiple structural changes. In this companion paper, we consider practical issues for the empirical applications of the procedures. We first address the problem of estimation of the break dates and present an efficient algorithm to obtain global minimizers of the sum of squared residuals. This algorithm is based on the principle of dynamic programming and requires at most least-squares operations of order O(T 2) for any number of breaks. Our method can be applied to both pure and partial structural-change models. Secondly, we consider the problem of forming confidence intervals for the break dates under various hypotheses about the structure of the data and the errors across segments. Third, we address the issue of testing for structural changes under very general conditions on the data and the errors. Fourth, we address the issue of estimating the number of breaks. We present simulation results pertaining to the behavior of the estimators and tests in finite samples. Finally, a few empirical applications are presented to illustrate the usefulness of the procedures. All methods discussed are implemented in a GAUSS program available upon request for non-profit academic use.
Resumo:
Conditional heteroskedasticity is an important feature of many macroeconomic and financial time series. Standard residual-based bootstrap procedures for dynamic regression models treat the regression error as i.i.d. These procedures are invalid in the presence of conditional heteroskedasticity. We establish the asymptotic validity of three easy-to-implement alternative bootstrap proposals for stationary autoregressive processes with m.d.s. errors subject to possible conditional heteroskedasticity of unknown form. These proposals are the fixed-design wild bootstrap, the recursive-design wild bootstrap and the pairwise bootstrap. In a simulation study all three procedures tend to be more accurate in small samples than the conventional large-sample approximation based on robust standard errors. In contrast, standard residual-based bootstrap methods for models with i.i.d. errors may be very inaccurate if the i.i.d. assumption is violated. We conclude that in many empirical applications the proposed robust bootstrap procedures should routinely replace conventional bootstrap procedures for autoregressions based on the i.i.d. error assumption.
Resumo:
In this paper we propose exact likelihood-based mean-variance efficiency tests of the market portfolio in the context of Capital Asset Pricing Model (CAPM), allowing for a wide class of error distributions which include normality as a special case. These tests are developed in the frame-work of multivariate linear regressions (MLR). It is well known however that despite their simple statistical structure, standard asymptotically justified MLR-based tests are unreliable. In financial econometrics, exact tests have been proposed for a few specific hypotheses [Jobson and Korkie (Journal of Financial Economics, 1982), MacKinlay (Journal of Financial Economics, 1987), Gib-bons, Ross and Shanken (Econometrica, 1989), Zhou (Journal of Finance 1993)], most of which depend on normality. For the gaussian model, our tests correspond to Gibbons, Ross and Shanken’s mean-variance efficiency tests. In non-gaussian contexts, we reconsider mean-variance efficiency tests allowing for multivariate Student-t and gaussian mixture errors. Our framework allows to cast more evidence on whether the normality assumption is too restrictive when testing the CAPM. We also propose exact multivariate diagnostic checks (including tests for multivariate GARCH and mul-tivariate generalization of the well known variance ratio tests) and goodness of fit tests as well as a set estimate for the intervening nuisance parameters. Our results [over five-year subperiods] show the following: (i) multivariate normality is rejected in most subperiods, (ii) residual checks reveal no significant departures from the multivariate i.i.d. assumption, and (iii) mean-variance efficiency tests of the market portfolio is not rejected as frequently once it is allowed for the possibility of non-normal errors.
Resumo:
In this paper, we propose several finite-sample specification tests for multivariate linear regressions (MLR) with applications to asset pricing models. We focus on departures from the assumption of i.i.d. errors assumption, at univariate and multivariate levels, with Gaussian and non-Gaussian (including Student t) errors. The univariate tests studied extend existing exact procedures by allowing for unspecified parameters in the error distributions (e.g., the degrees of freedom in the case of the Student t distribution). The multivariate tests are based on properly standardized multivariate residuals to ensure invariance to MLR coefficients and error covariances. We consider tests for serial correlation, tests for multivariate GARCH and sign-type tests against general dependencies and asymmetries. The procedures proposed provide exact versions of those applied in Shanken (1990) which consist in combining univariate specification tests. Specifically, we combine tests across equations using the MC test procedure to avoid Bonferroni-type bounds. Since non-Gaussian based tests are not pivotal, we apply the “maximized MC” (MMC) test method [Dufour (2002)], where the MC p-value for the tested hypothesis (which depends on nuisance parameters) is maximized (with respect to these nuisance parameters) to control the test’s significance level. The tests proposed are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995. Our empirical results reveal the following. Whereas univariate exact tests indicate significant serial correlation, asymmetries and GARCH in some equations, such effects are much less prevalent once error cross-equation covariances are accounted for. In addition, significant departures from the i.i.d. hypothesis are less evident once we allow for non-Gaussian errors.
Resumo:
We study the problem of testing the error distribution in a multivariate linear regression (MLR) model. The tests are functions of appropriately standardized multivariate least squares residuals whose distribution is invariant to the unknown cross-equation error covariance matrix. Empirical multivariate skewness and kurtosis criteria are then compared to simulation-based estimate of their expected value under the hypothesized distribution. Special cases considered include testing multivariate normal, Student t; normal mixtures and stable error models. In the Gaussian case, finite-sample versions of the standard multivariate skewness and kurtosis tests are derived. To do this, we exploit simple, double and multi-stage Monte Carlo test methods. For non-Gaussian distribution families involving nuisance parameters, confidence sets are derived for the the nuisance parameters and the error distribution. The procedures considered are evaluated in a small simulation experi-ment. Finally, the tests are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995.
Resumo:
We propose methods for testing hypotheses of non-causality at various horizons, as defined in Dufour and Renault (1998, Econometrica). We study in detail the case of VAR models and we propose linear methods based on running vector autoregressions at different horizons. While the hypotheses considered are nonlinear, the proposed methods only require linear regression techniques as well as standard Gaussian asymptotic distributional theory. Bootstrap procedures are also considered. For the case of integrated processes, we propose extended regression methods that avoid nonstandard asymptotics. The methods are applied to a VAR model of the U.S. economy.
Resumo:
"Thèse présentée à la Faculté des études supérieures en vue de l'obtention du grade de Docteur en droit (LL.D.)"