994 resultados para Quasars: emission lines
Resumo:
An investigation by optical spectroscopy of the Eu3 + and Er3 + active ions in the crystallized fluorozirconate matrix LaZr2F11 is presented. The D-5(1) --> F-7(0-5) emission lines of Eu3 + are used to extract the F-7(0-5) energy scheme and the observed extinctions permit the deduction of irreducible representations (IRREPS) associated with corresponding sub-levels in the D-2 symmetry. The crystal field analysis was carried out on a 387 x 387 basis set, comprising the F-7, D-5(1,2,3) F-5(1,2), (5)G(1,2,3) and P-3(1,2,3,4,5,6) terms of the Eu-3 (+) 4f(6) configuration. The deviation and rms are 6.8 and 7.9 cm (-1), respectively for 38 levels and ten parameters. The experimental crystal field parameters are in good agreement with the ab-initio ones. Moreover, the relative intensities of the D-5(0) --> F-7(2,3,4) emissions are well reproduced by an 'ab-initio' calculation, except for three lines. The Er3 + ions introduced in LaZr2F11, microcrystals also lie in an unique crystallographic site. A total of 31 energy levels were recorded and the crystal field analysis led to 6.6 and 7.8 cm (-1) for the deviation and rms, respectively, for nine variable parameters taken into account. The experimental CF parameters for Er3 + and Eu3 + are very similar, which seems to show that the host lattice contracts around the smaller Er3 + ion. The informations given by both Eu3 + and Eu3 + optical probes in LaZr2F11 are very consistent with the structure previously determined for the isotypic PrZr2F11 fluoride. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
Upconversion fluorescence emission of Er3+/Yb3+-doped Bi2O3-Na2O-Nb2O5-GeO2 heavy metal glass samples excited at 1.06 mu m is experimentally investigated. The results reveal the existence of intense emission bands centered around 520, 545, and 655 nm. The germano-niobate based host glass presents high transparency in the region of 400-2700 nm, the capability of incorporating high dopant concentrations, high melting temperature, and large resistance to atmospheric moisture. The observed intensity of the green fluorescence emission, suggested that the niobium based host glass material plays an important role in the efficiency of the upconversion process. Emission lines centered at 425, 483, 503, 608, and 628 nm were also observed. (C) 1997 American Institute of Physics.
Resumo:
In this paper, we report luminescent and morphological studies with yttrium oxide samples doped with ytterbium and erbium. The samples were prepared by the combustion method and also from different precursors: oxalate, basic carbonate and polymeric resin. All powders were identified Lis being an yttrium oxide with a C-form structure, independent of the employed precursor. From mean crystallite size measurements, it was verified that oxides prepared through the polymeric precursor and combustion methods lead to the smallest crystallite size. Particle shape and size were investigated by SEM and TEM, and showed that both the oxalate precursor and the combustion methods do not provide oxide materials of suitable shape or size, on the other hand. The basic carbonate and polymeric precursors resulted in spherically shaped particles with an average diameter of 90 and 15 run. respectively, Upon 980 run diode laser excitation, green and red emission lines were detected for all samples and were assigned to the H-2(11/2) S-4(3/2) -> I-4(15/2) and (4)Fg(9/2) -> 4I(15/12) transitions, respectively. Such transitions are characteristic for Er3+ and result from energy transfer from Yb3+ energy levels, F-2(7/2) -> F-2(5/2). A relationship between the decrease in the mean crystallite size and the enhancement in red emission was also established as well as the influence of the presence of a high percentage of Yb-3 Both factors promote ET from Yb3+ (F-2(5/2)) to Er3+ (I-4(11/2)). (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
In this work we present high resolution Doppler limited absorption spectra measurements of the C-O stretching mode of (CH3OH)-C-13, obtained from diode laser spectroscopy, and the Fourier Transform spectrum obtained at 0. 12 cm-1 resolution. By using these data and previously known spectroscopic information, we determined the frequency and the J quantum number for the multiplets of the P and R(J) branches of the C-O stretching fundamental band. Infrared transitions in coincidence with emission lines of the regular CO2 laser and some of its isotope parents are pointed out.
Resumo:
Strong interest in developing technology for visual information. stimulates research for thin film electroluminescent devices. Here, for the first time, we report that thulium- and terbium-doped zinc-oxide films are suitable for electroluminescence applications. Two different devices were assembled as lTO/LiF/ZnO:RE/LiF/Al or ITO/SiO2/ZnO:RE/SiO2/Al, where ZnO:RE is a film of zinc oxide containing 10 at% of Tb3+ or Tm3+. Electroluminescence spectra show that besides a broad emission band with maximum around 650 nm assigned to ZnO, also emission lines from Tb3+ at 484 nm (D-5(4) -> F-7(6)), 543 nm (D-5(4) -> F-7(6)), and 589 nm (D-5(4) -> F-7(4)), or from Tm3+ at 478 nm ((1)G(4) -> H-3(6)), and 511 mn (D-1(2) -> H-3(5)) were detected. Intensity of emission as function of applied voltage and current-voltage characteristic are shown and discussed. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Rare earth complexes (RE) can be incorporated in silica matrixes, originating organic/inorganic hybrid materials with good thermal stability and high rare earth emission lines. In this work, the hybrid material was obtained by the polymeric precursor method and ultrasonic dispersed with spherical silica particles prepared by the Stöber Method. The Raman spectra indicated that the Eu3+ ions are involved in a polymeric structure formed as consequence of the chelation and polyesterification reactions of this ion with citric acid and ethylene glycol. After the ultrasonic stirring, 2-hydroxynicotinic ligand will also compose this polymeric rigid structure. The TGA/DTA analysis showed that this polymeric material was thermal decomposed at 300 °C. Moreover, this process allows the chelating process of the 2-hydroxynicotinic acid ligand to the Eu3+ ions. The 29Si NMR showed that the ultrasonic dispersion of the reactants was not able to promote the functionalization of the silica particles with the 2-hydroxynicotinic acid ligand. Moreover, heat treatment promotes the [Eu(HnicO2)3] complex particles incorporation into silica pores. At this temperature, the TGA curve showed that only the thermal degradation of ethylene glycol and citric acid used during the experimental procedure occurs. The silica and hybrid materials are composed by spherical and aggregated particles with particle size of approximately 450 nm, which can be influenced by the heat treatment. These materials also present an absorption band located at 337 nm. The photoluminescent study showed that when the hybrid samples were excited at 337 nm wavelength, the ligand absorbs the excitation light. Part of this energy is transferred to the Eu3+ ion, which main emission, 5D0→ 7F2, is observed in the emission spectrum at 612 nm. As the heating temperature increases to 300 C, the energy transfer is more favorable. The lifetime values showed that the Eu3+ emission is enhanced due to the energy transfer process in the powders. © 2013 Elsevier B.V. All rights reserved.
Resumo:
A polymeric complex [Eu(α-tpc)3(α-Htpc) 2]n and its characterization by single crystal X-ray and thermal analysis, infrared and photoluminescence spectroscopies are described. The compound crystallizes in the monoclinic Cc space group. The asymmetric unit is formed from a europium ion bonded to one carboxyl oxygen of five different thiophene carboxylic moieties. Three of these moieties are deprotonated and bridge between neighboring europium ions giving rise to an infinite polymer along the c axis. Besides the europium characteristic emission lines, the emission spectra show unambiguously the crystal size effect on the 5D0 → 7F0 transition. The complex thermal decomposition at 220 C leads to a stable luminescent complex in which the 5D0 → 7F4 transition reveals a monomeric characteristic. The Judd-Ofelt intensity parameters to the polymeric and the monomeric compound with the same ligand and coordination number were compared. © 2013 Published by Elsevier Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Soil organic matter (SOM) constitutes an important reservoir of terrestrial carbon and can be considered an alternative for atmospheric carbon storage, contributing to global warming mitigation. Soil management can favor atmospheric carbon incorporation into SUM or its release from SOM to atmosphere. Thus, the evaluation of the humification degree (HD), which is an indication of the recalcitrance of SOM, can provide an estimation of the capacity of carbon sequestration by soils under various managements. The HD of SOM can be estimated by using various analytical techniques including fluorescence spectroscopy. In the present work, the potential of laser-induced breakdown spectroscopy (LIBS) to estimate the HD of SUM was evaluated for the first time. Intensities of emission lines of Al, Mg and Ca from LIBS spectra showing correlation with fluorescence emissions determined by laser-induced fluorescence spectroscopy (LIFS) reference technique were used to obtain a multivaried calibration model based on the k-nearest neighbor (k-NN) method. The values predicted by the proposed model (A-LIBS) showed strong correlation with LIFS results with a Pearson's coefficient of 0.87. The HD of SUM obtained after normalizing A-LIBS by total carbon in the sample showed a strong correlation to that determined by LIFS (0.94), thus suggesting the great potential of LIBS for this novel application. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
V393 Scorpii is a double periodic variable characterized by a relatively stable non-orbital photometric cycle of 253 d. Mennickent et al. argue for the presence of a massive optically thick disc around the more massive B-type component and describe the evolutionary stage of the system. In this paper, we analyse the behaviour of the main spectroscopic optical lines during the long non-orbital photometric cycle. We study the radial velocity of the donor determining its orbital elements and find a small but significant orbital eccentricity (e = 0.04). The donor spectral features are modelled and removed from the spectrum at every observing epoch using the light-curve model given by Mennickent et al. We find that the line emission is larger during eclipses and mostly comes from a bipolar wind. We also find that the long cycle is explained in terms of a modulation of the wind strength; the wind has a larger line and continuum emissivity at the high state. We report the discovery of highly variable chromospheric emission in the donor, as revealed by the Doppler maps of the emission lines Mg II 4481 and C I 6588. We discuss notable and some novel spectroscopic features like discrete absorption components, especially visible at blue depressed O I 7773 absorption wings during the second half-cycle, Balmer double emission with V/R curves showing 'Z-type' and 'S-type' excursions around secondary and main eclipses, respectively, and H beta emission wings extending up to +/- 2000 km s(-1). We also discuss possible causes for these phenomena and for their modulations with the long cycle.
Resumo:
The periodic spectroscopic events in eta Carinae are now well established and occur near the periastron passage of two massive stars in a very eccentric orbit. Several mechanisms have been proposed to explain the variations of different spectral features, such as an eclipse by the wind-wind collision (WWC) boundary, a shell ejection from the primary star or accretion of its wind onto the secondary. All of them have problems explaining all the observed phenomena. To better understand the nature of the cyclic events, we performed a dense monitoring of eta Carinae with five Southern telescopes during the 2009 low-excitation event, resulting in a set of data of unprecedented quality and sampling. The intrinsic luminosity of the He II lambda 4686 emission line (L similar to 310 L-circle dot) just before periastron reveals the presence of a very luminous transient source of extreme UV radiation emitted in the WWC region. Clumps in the primary's wind probably explain the flare-like behavior of both the X-ray and He II lambda 4686 light curves. After a short-lived minimum, He II lambda 4686 emission rises again to a new maximum, when X-rays are still absent or very weak. We interpret this as a collapse of the WWC onto the "surface" of the secondary star, switching off the hard X-ray source and diminishing the WWC shock cone. The recovery from this state is controlled by the momentum balance between the secondary's wind and the clumps in the primary's wind.
Resumo:
Seyfert galaxies are the closest active galactic nuclei. As such, we can use
them to test the physical properties of the entire class of objects. To investigate
their general properties, I took advantage of different methods of data analysis. In
particular I used three different samples of objects, that, despite frequent overlaps,
have been chosen to best tackle different topics: the heterogeneous BeppoS AX
sample was thought to be optimized to test the average hard X-ray (E above 10 keV)
properties of nearby Seyfert galaxies; the X-CfA was thought the be optimized to
compare the properties of low-luminosity sources to the ones of higher luminosity
and, thus, it was also used to test the emission mechanism models; finally, the
XMM–Newton sample was extracted from the X-CfA sample so as to ensure a
truly unbiased and well defined sample of objects to define the average properties
of Seyfert galaxies.
Taking advantage of the broad-band coverage of the BeppoS AX MECS and
PDS instruments (between ~2-100 keV), I infer the average X-ray spectral propertiesof nearby Seyfert galaxies and in particular the photon index (
Resumo:
Negli ultimi vent’anni innumerevoli sforzi sono stati compiuti a livello internazionale per ottenere un censimento completo degli “Active Galactic Nuclei” (AGN), ovvero di nuclei galattici attivi, oscurati in banda X. Tale censimento potrebbe rappresentare infatti la soluzione alla problematica del cosiddetto fondo cosmico non risolto in banda X. Gli studi finora condotti sfruttano la forte correlazione fra l'attività del SMBH e l'evoluzione della galassia ospite attraverso osservazioni in banda X hard, nel vicino-medio infrarosso e nell'ottico. Questa tesi si colloca in questo scenario con lo scopo di verificare e confermare l'affidabilità della selezione tramite la riga di emissione del CIV a 1549 Å di AGN oscurati fino a z≈3. Per raggiungere tale obiettivo è stato assunto che il CIV rappresenti un indicatore affidabile della luminosità intrinseca degli AGN e del loro alto potenziale di ionizzazione. Inoltre, allo studio in banda ottica delle sorgenti sono stati associati i dati profondi in banda X per analizzarne le proprietà X e caratterizzarne l’ammontare dell’oscuramento in tale banda in termini di densità di colonna di idrogeno. In particolare, in questo lavoro vengono presentati i risultati dell’analisi in banda X del campione di 192 AGN selezionati nella survey ottica zCOSMOS-Deep, attraverso la riga di emissione del CIV a 1549 Å. Queste 192 sorgenti hanno un redshift medio di 2.2 e una magnitudine media AB in banda B di 23.7. La copertura in banda X del campo selezionato è data dalla survey Chandra COSMOS-Legacy comprendente 4.6 Ms di osservazioni in un’area di 2.2 deg2. I risultati ottenuti in questo progetto di tesi tramite la selezione possono ritenersi soddisfacenti: metà delle AGN di Tipo 2 selezionate con il CIV e rilevate in banda X risultano fortemente oscurate (NH>10^23 cm^(-2) ). Inoltre, le AGN di Tipo 2 non rilevate in banda X risultano consistenti con uno scenario di oggetti oscurati.