962 resultados para Quadratic Bézier curve
Resumo:
In this paper we address three challenges. First, we discuss how international new ventures (INVs) are probably not explained by the Uppsala model as there is no time for learning about foreign markets in newly born and small firms. Only in the longer term can INVs develop experiential learning to overcome the liability of foreignness as they expand abroad. Second, we advance theoretically on previous research demonstrating that the multinationality−performance relationship of INVs follows a traditional S-shaped relationship, but they first experience a ‘born global illusion’ which leads to a non-traditional M curve. Third, using a panel data analysis for the period 1994–2008 we find empirically that Spanish INVs follow an inverted U curve in the very short term, where no learning takes place, but that experience gained over time yields an M-curve relationship once learning takes place.
Resumo:
A number of studies have found an asymmetric response of consumer price index inflation to the output gap in the US in simple Phillips curve models. We consider whether there are similar asymmetries in mark-up pricing models, that is, whether the mark-up over producers' costs also depends upon the sign of the (adjusted) output gap. The robustness of our findings to the price series is assessed, and also whether price-output responses in the UK are asymmetric.
Resumo:
In this note, the authors discuss the contribution that frictional sliding of ice floes (or floe aggregates) past each other and pressure ridging make to the plastic yield curve of sea ice. Using results from a previous study that explicitly modeled the amount of sliding and ridging that occurs for a given global strain rate, it is noted that the relative contribution of sliding and ridging to ice stress depends upon ice thickness. The implication is that the shape and size of the plastic yield curve is dependent upon ice thickness. The yield-curve shape dependence is in addition to plastic hardening/weakening that relates the size of the yield curve to ice thickness. In most sea ice dynamics models the yield-curve shape is taken to be independent of ice thickness. The authors show that the change of the yield curve due to a change in the ice thickness can be taken into account by a weighted sum of two thickness-independent rheologies describing ridging and sliding effects separately. It would be straightforward to implement the thickness-dependent yield-curve shape described here into sea ice models used for global or regional ice prediction.
Resumo:
Using a linear factor model, we study the behaviour of French, Germany, Italian and British sovereign yield curves in the run up to EMU. This allows us to determine which of these yield curves might best approximate a benchmark yield curve post EMU. We find that the best approximation for the risk free yield is the UK three month T-bill yield, followed by the German three month T-bill yield. As no one sovereign yield curve dominates all others, we find that a composite yield curve, consisting of French, Italian and UK bonds at different maturity points along the yield curve should be the benchmark post EMU.
Resumo:
Forecasting wind power is an important part of a successful integration of wind power into the power grid. Forecasts with lead times longer than 6 h are generally made by using statistical methods to post-process forecasts from numerical weather prediction systems. Two major problems that complicate this approach are the non-linear relationship between wind speed and power production and the limited range of power production between zero and nominal power of the turbine. In practice, these problems are often tackled by using non-linear non-parametric regression models. However, such an approach ignores valuable and readily available information: the power curve of the turbine's manufacturer. Much of the non-linearity can be directly accounted for by transforming the observed power production into wind speed via the inverse power curve so that simpler linear regression models can be used. Furthermore, the fact that the transformed power production has a limited range can be taken care of by employing censored regression models. In this study, we evaluate quantile forecasts from a range of methods: (i) using parametric and non-parametric models, (ii) with and without the proposed inverse power curve transformation and (iii) with and without censoring. The results show that with our inverse (power-to-wind) transformation, simpler linear regression models with censoring perform equally or better than non-linear models with or without the frequently used wind-to-power transformation.
Resumo:
The present work describes a new tool that helps bidders improve their competitive bidding strategies. This new tool consists of an easy-to-use graphical tool that allows the use of more complex decision analysis tools in the field of Competitive Bidding. The graphic tool described here tries to move away from previous bidding models which attempt to describe the result of an auction or a tender process by means of studying each possible bidder with probability density functions. As an illustration, the tool is applied to three practical cases. Theoretical and practical conclusions on the great potential breadth of application of the tool are also presented.
Resumo:
Let L be a number field and let E/L be an elliptic curve with complex multiplication by the ring of integers O_K of an imaginary quadratic field K. We use class field theory and results of Skorobogatov and Zarhin to compute the transcendental part of the Brauer group of the abelian surface ExE. The results for the odd order torsion also apply to the Brauer group of the K3 surface Kum(ExE). We describe explicitly the elliptic curves E/Q with complex multiplication by O_K such that the Brauer group of ExE contains a transcendental element of odd order. We show that such an element gives rise to a Brauer-Manin obstruction to weak approximation on Kum(ExE), while there is no obstruction coming from the algebraic part of the Brauer group.
Resumo:
Let C be a smooth, absolutely irreducible genus 3 curve over a number field M. Suppose that the Jacobian of C has complex multiplication by a sextic CM-field K. Suppose further that K contains no imaginary quadratic subfield. We give a bound on the primes p of M such that the stable reduction of C at p contains three irreducible components of genus 1.
Resumo:
We extend the method of Cassels for computing the Cassels-Tate pairing on the 2-Selmer group of an elliptic curve, to the case of 3-Selmer groups. This requires significant modifications to both the local and global parts of the calculation. Our method is practical in sufficiently small examples, and can be used to improve the upper bound for the rank of an elliptic curve obtained by 3-descent.
Resumo:
Let E/Q be an elliptic curve and p a rational prime of good ordinary reduction. For every imaginary quadratic field K/Q satisfying the Heegner hypothesis for E we have a corresponding line in E(K)\otimes Q_p, known as a shadow line. When E/Q has analytic rank 2 and E/K has analytic rank 3, shadow lines are expected to lie in E(Q)\otimes Qp. If, in addition, p splits in K/Q, then shadow lines can be determined using the anticyclotomic p-adic height pairing. We develop an algorithm to compute anticyclotomic p-adic heights which we then use to provide an algorithm to compute shadow lines. We conclude by illustrating these algorithms in a collection of examples.
Resumo:
It is believed that eta Carinae is actually a massive binary system, with the wind-wind interaction responsible for the strong X-ray emission. Although the overall shape of the X-ray light curve can be explained by the high eccentricity of the binary orbit, other features like the asymmetry near periastron passage and the short quasi-periodic oscillations seen at those epochs have not yet been accounted for. In this paper we explain these features assuming that the rotation axis of eta Carinae is not perpendicular to the orbital plane of the binary system. As a consequence, the companion star will face eta Carinae on the orbital plane at different latitudes for different orbital phases and, since both the mass-loss rate and the wind velocity are latitude dependent, they would produce the observed asymmetries in the X-ray flux. We were able to reproduce the main features of the X-ray light curve assuming that the rotation axis of eta Carinae forms an angle of 29 degrees +/- 4 degrees with the axis of the binary orbit. We also explained the short quasi-periodic oscillations by assuming nutation of the rotation axis, with an amplitude of about 5 degrees and a period of about 22 days. The nutation parameters, as well as the precession of the apsis, with a period of about 274 years, are consistent with what is expected from the torques induced by the companion star.
Resumo:
Electromagnetic induction (EMI) method results are shown for vertical magnetic dipole (VMD) configuration by using the EM38 equipment. Performance in the location of metallic pipes and electrical cables is compared as a function of instrumental drift correction by linear and quadratic adjusting under controlled conditions. Metallic pipes and electrical cables are buried at the IAG/USP shallow geophysical test site in Sao Paulo City. Brazil. Results show that apparent electrical conductivity and magnetic susceptibility data were affected by ambient temperature variation. In order to obtain better contrast between background and metallic targets it was necessary to correct the drift. This correction was accomplished by using linear and quadratic relation between conductivity/susceptibility and temperature intending comparative studies. The correction of temperature drift by using a quadratic relation was effective, showing that all metallic targets were located as well deeper targets were also improved. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this paper we present some formulae for topological invariants of projective complete intersection curves with isolated singularities in terms of the Milnor number, the Euler characteristic and the topological genus. We also present some conditions, involving the Milnor number and the degree of the curve, for the irreducibility of complete intersection curves.
Resumo:
We use an inequality due to Bochnak and Lojasiewicz, which follows from the Curve Selection Lemma of real algebraic geometry in order to prove that, given a C(r) function f : U subset of R(m) -> R, we have lim(y -> xy is an element of crit(f)) vertical bar f(y) - f(x)vertical bar/vertical bar y - x vertical bar(r) = 0, for all x is an element of crit(f)` boolean AND U, where crit( f) = {x is an element of U vertical bar df ( x) = 0}. This shows that the so-called Morse decomposition of the critical set, used in the classical proof of the Morse-Sard theorem, is not necessary: the conclusion of the Morse decomposition lemma holds for the whole critical set. We use this result to give a simple proof of the classical Morse-Sard theorem ( with sharp differentiability assumptions).
Resumo:
In this paper, we classify all the global phase portraits of the quadratic polynomial vector fields having a rational first integral of degree 3. (C) 2008 Elsevier Ltd. All rights reserved.