939 resultados para Pulmonary ventilation
Resumo:
In this paper, we examine the lawfulness of a proposal to provide elective ventilation to incompetent patients who are potential organ donors. Under the current legal framework, this depends on whether the best interests test could be satisfied. It might be argued that, because the Mental Capacity Act 2005 (UK) (and the common law) makes it clear that the best interests test is not confined to the patient's clinical interests, but extends to include the individual's own values, wishes and beliefs, the proposal will be in the patient's best interests. We reject this claim. We argue that, as things currently stand, the proposal could not lawfully be justified as a blanket proposition by reference to the best interests test. Accordingly, a modification of the law would be necessary to render the proposal lawful. We conclude with a suggestion about how that could be achieved.
Resumo:
The measurement of ventilation distribution is currently performed using inhaled tracer gases for multiple breath inhalation studies or imaging techniques to quantify spatial gas distribution. Most tracer gases used for these studies have properties different from that of air. The effect of gas density on regional ventilation distribution has not been studied. This study aimed to measure the effect of gas density on regional ventilation distribution. Methods Ventilation distribution was measured in seven rats using electrical impedance tomography (EIT) in supine, prone, left and right lateral positions while being mechanically ventilated with either air, heliox (30% oxygen, 70% helium) or sulfur hexafluoride (20% SF6, 20% oxygen, 60% air). The effect of gas density on regional ventilation distribution was assessed. Results Gas density did not impact on regional ventilation distribution. The non-dependent lung was better ventilated in all four body positions. Gas density had no further impact on regional filling characteristics. The filling characteristics followed an anatomical pattern with the anterior and left lung showing a greater impedance change during the initial phase of the inspiration. Conclusion It was shown that gas density did not impact on convection dependent ventilation distribution in rats measured with EIT.
Resumo:
Background: Hyperpolarised helium MRI (He3 MRI) is a new technique that enables imaging of the air distribution within the lungs. This allows accurate determination of the ventilation distribution in vivo. The technique has the disadvantages of requiring an expensive helium isotope, complex apparatus and moving the patient to a compatible MRI scanner. Electrical impedance tomography (EIT) a non-invasive bedside technique that allows constant monitoring of lung impedance, which is dependent on changes in air space capacity in the lung. We have used He3MRI measurements of ventilation distribution as the gold standard for assessment of EIT. Methods: Seven rats were ventilated in supine, prone, left and right lateral position with 70% helium/30% oxygen for EIT measurements and pure helium for He3 MRI. The same ventilator and settings were used for both measurements. Image dimensions, geometric centre and global in homogeneity index were calculated. Results: EIT images were smaller and of lower resolution and contained less anatomical detail than those from He3 MRI. However, both methods could measure positional induced changes in lung ventilation, as assessed by the geometric centre. The global in homogeneity index were comparable between the techniques. Conclusion: EIT is a suitable technique for monitoring ventilation distribution and inhomgeneity as assessed by comparison with He3 MRI.
Resumo:
Currently there is confusion about the value of using nutritional support to treat malnutrition and improve functional outcomes in chronic obstructive pulmonary disease (COPD). This systematic review and meta-analysis of randomised controlled trials (RCTs) aimed to clarify the effectiveness of nutritional support in improving functional outcomes in COPD. A systematic review identified 12 RCTs (n = 448) in stable COPD patients investigating the effects of nutritional support [dietary advice (1 RCT), oral nutritional supplements (ONS; 10 RCTs), enteral tube feeding (1 RCT)] versus control on functional outcomes. Meta-analysis of the changes induced by intervention found that whilst respiratory function (FEV(1,) lung capacity, blood gases) was unresponsive to nutritional support, both inspiratory and expiratory muscle strength (PI max +3.86 SE 1.89 cm H(2) O, P = 0.041; PE max +11.85 SE 5.54 cm H(2) O, P = 0.032) and handgrip strength (+1.35 SE 0.69 kg, P = 0.05) were significantly improved, and associated with weight gains of ≥ 2 kg. Nutritional support produced significant improvements in quality of life in some trials, although meta-analysis was not possible. It also led to improved exercise performance and enhancement of exercise rehabilitation programmes. This systematic review and meta-analysis demonstrates that nutritional support in COPD results in significant improvements in a number of clinically relevant functional outcomes, complementing a previous review showing improvements in nutritional intake and weight.
Resumo:
This study aimed to quantify the efficiency of deep bag and electrostatic filters, and assess the influence of ventilation systems using these filters on indoor fine (<2.5 µm) and ultrafine particle concentrations in commercial office buildings. Measurements and modelling were conducted for different indoor and outdoor particle source scenarios at three office buildings in Brisbane, Australia. Overall, the in-situ efficiency, measured for particles in size ranges 6 to 3000 nm, of the deep bag filters ranged from 26.3 to 46.9% for the three buildings, while the in-situ efficiency of the electrostatic filter in one building was 60.2%. The highest PN and PM2.5 concentrations in one of the office buildings (up to 131% and 31% higher than the other two buildings, respectively) were due to the proximity of the building’s HVAC air intakes to a nearby bus-only roadway, as well as its higher outdoor ventilation rate. The lowest PN and PM2.5 concentrations (up to 57% and 24% lower than the other two buildings, respectively) were measured in a building that utilised both outdoor and mixing air filters in its HVAC system. Indoor PN concentrations were strongly influenced by outdoor levels and were significantly higher during rush-hours (up to 41%) and nucleation events (up to 57%), compared to working-hours, for all three buildings. This is the first time that the influence of new particle formation on indoor particle concentrations has been identified and quantified. A dynamic model for indoor PN concentration, which performed adequately in this study also revealed that using mixing/outdoor air filters can significantly reduce indoor particle concentration in buildings where indoor air was strongly influenced by outdoor particle levels. This work provides a scientific basis for the selection and location of appropriate filters and outdoor air intakes, during the design of new, or upgrade of existing, building HVAC systems. The results also serve to provide a better understanding of indoor particle dynamics and behaviours under different ventilation and particle source scenarios, and highlight effective methods to reduce exposure to particles in commercial office buildings.
Resumo:
Background: Procedural sedation and analgesia (PSA) administered by nurses in the cardiac catheterisation laboratory (CCL) is unlikely to yield serious complications. However, the safety of this practice is dependent on timely identification and treatment of depressed respiratory function. Aim: Describe respiratory monitoring in the CCL. Methods: Retrospective medical record audit of adult patients who underwent a procedure in the CCLs of one private hospital in Brisbane during May and June 2010. An electronic database was used to identify subjects and an audit tool ensured data collection was standardised. Results: Nurses administered PSA during 172/473 (37%) procedures including coronary angiographies, percutaneous coronary interventions, electrophysiology studies, radiofrequency ablations, cardiac pacemakers, implantable cardioverter defibrillators, temporary pacing leads and peripheral vascular interventions. Oxygen saturations were recorded during 160/172 (23%) procedures, respiration rate was recorded during 17/172 (10%) procedures, use of oxygen supplementation was recorded during 40/172 (23%) procedures and 13/172 (7.5%; 95% CI=3.59–11.41%) patients experienced oxygen desaturation. Conclusion: Although oxygen saturation was routinely documented, nurses did not regularly record respiration observations. It is likely that surgical draping and the requirement to minimise radiation exposure interfered with nurses’ ability to observe respiration. Capnography could overcome these barriers to respiration assessment as its accurate measurement of exhaled carbon dioxide coupled with the easily interpretable waveform output it produces, which displays a breath-by-breath account of ventilation, enables identification of respiratory depression in real-time. Results of this audit emphasise the need to ascertain the clinical benefits associated with using capnography to assess ventilation during PSA in the CCL.
Resumo:
Exogenous prostacyclin is effective in reducing pulmonary vascular resistance in some forms of human pulmonary hypertension (PH). To explore whether endogenous prostaglandins played a similar role in pulmonary hypertension, we examined the effect of deleting cyclooxygenase (COX)-gene isoforms in a chronic hypoxia model of PH. Pulmonary hypertension, examined by direct measurement of right ventricular end systolic pressure (RVESP), right ventricular hypertrophy (n = 8), and hematocrit (n = 3), was induced by 3 weeks of hypobarichypoxia in wild-type and COX-knockout (KO) mice. RVESP was increased in wild-type hypoxic mice compared with normoxic controls (24.4 ± 1.4 versus 13.8 ± 1.9 mm Hg; n = 8; p < 0.05). COX-2 KO mice showed a greater increase in RVESP following hypoxia (36.8 ± 2.7 mm Hg; p < 0.05). Urinary thromboxane (TX)B2 excretion increased following hypoxia (44.6 ± 11.1 versus 14.7 ± 1.8 ng/ml; n = 6; p < 0.05), an effect that was exacerbated by COX-2 gene disruption (54.5 ± 10.8 ng/ml; n = 6). In contrast, the increase in 6-keto-prostacyclin1α excretion following hypoxia was reduced by COX-2 gene disruption (29 ± 3 versus 52 ± 4.6 ng/ml; p < 0.01). Tail cut bleed times were lower following hypoxia, and there was evidence of intravascular thrombosis in lung vessels that was exacerbated by disruption of COX-2 and reduced by deletion of COX-1. The TXA2/endoperoxide receptor antagonist ifetroban (50 mg/kg/day) offset the effect of deleting the COX-2 gene, attenuating the hypoxia-induced rise in RVESP and intravascular thrombosis. COX-2 gene deletion exacerbates pulmonary hypertension, enhances sensitivity to TXA2, and induces intravascular thrombosis in response to hypoxia. The data provide evidence that endogenous prostaglandins modulate the pulmonary response to hypoxia. Copyright © 2008 by The American Society for Pharmacology and Experimental Therapeutics.
Resumo:
It has been postulated that susceptible individuals may acquire infection with nontuberculous mycobacteria (NTM) from water and aerosol exposure. This study examined household water and shower aerosols of patients with NTM pulmonary disease. The mycobacteria isolated from clinical samples from 20 patients included M. avium (5 patients), M. intracellulare (12 patients), M. abscessus (7 patients), M. gordonae (1 patient), M. lentiflavum (1 patient), M. fortuitum (1 patient), M. peregrinum (1 patient), M. chelonae (1 patient), M. triplex (1 patient), and M. kansasii (1 patient). One-liter water samples and swabs were collected from all taps, and swimming pools or rainwater tanks. Shower aerosols were sampled using Andersen six-stage cascade impactors. For a subgroup of patients, real-time PCR was performed and high-resolution melt profiles were compared to those of ATCC control strains. Pathogenic mycobacteria were isolated from 19 homes. Species identified in the home matched that found in the patient in seven (35%) cases: M. abscessus (3 cases), M. avium (1 case), M. gordonae (1 case), M. lentiflavum (1 case), and M. kansasii (1 case). In an additional patient with M. abscessus infection, this species was isolated from potable water supplying her home. NTM grown from aerosols included M. abscessus (3 homes), M. gordonae (2 homes), M. kansasii (1 home), M. fortuitum complex (4 homes), M. mucogenicum (1 home), and M. wolinskyi (1 home). NTM causing human disease can be isolated from household water and aerosols. The evidence appears strongest for M. avium, M. kansasii, M. lentiflavum, and M. abscessus. Despite a predominance of disease due to M. intracellulare, we found no evidence for acquisition of infection from household water for this species.
Resumo:
Chlamydia pneumoniae is responsible for up to 20% of community acquired pneumonia and can exacerbate chronic inflammatory diseases. As the majority of infections are either mild or asymptomatic, a vaccine is recognized to have the greatest potential to reduce infection and disease prevalence. Using the C. muridarum mouse model of infection, we immunized animals via the intranasal (IN), sublingual (SL) or transcutaneous (TC) routes, with recombinant chlamydial major outer membrane protein (MOMP) combined with adjuvants CTA1-DD or a combination of cholera toxin/CpG-oligodeoxynucleotide (CT/CpG). Vaccinated animals were challenged IN with C. muridarum and protection against infection and pathology was assessed. SL and TC immunization with MOMP and CT/CpG was the most protective, significantly reducing chlamydial burden in the lungs and preventing weight loss, which was similar to the protection induced by a previous live infection. Unlike a previous infection however, these vaccinations also provided almost complete protection against fibrotic scarring in the lungs. Protection against infection was associated with antigen-specific production of IFNγ, TNFα and IL-17 by splenocytes, however, protection against both infection and pathology required the induction of a similar pro-inflammatory response in the respiratory tract draining lymph nodes. Interestingly, we also identified two contrasting vaccinations capable of preventing infection or pathology individually. Animals IN immunized with MOMP and either adjuvant were protected from infection, but not the pathology. Conversely, animals TC immunized with MOMP and CTA1-DD were protected from pathology, even though the chlamydial burden in this group was equivalent to the unimmunized controls. This suggests that the development of pathology following an IN infection of vaccinated animals was independent of bacterial load and may have been driven instead by the adaptive immune response generated following immunization. This identifies a disconnection between the control of infection and the development of pathology, which may influence the design of future vaccines.
Resumo:
Introduction The presentation of pulmonary embolism to the emergency department (ED) can prove challenging because of the myriad of potential disease processes that mimic its signs and symptoms. The incidence of pulmonary embolism and indeed the mortality associated with it is relatively high. Early diagnosis and treatment is crucial in off-setting the potential deleterious effects associated with this condition. The aim of this article is to present a nursing case review of a patient presenting to the ED with a diagnosis of pulmonary embolism. Method We chose to use a case review to highlight the nursing and medical care that was provided for a patient who presented to the emergency department acutely with dyspnoea, chest pain and pyrexia. The use of case reviews are useful in reporting unusual or rare cases and this format is typically seen more in medicine than in nursing. They can naturally take one of two formats—a single case report or a series of case reports; in this case we opted to report on a single case. Discussion The gentleman in question was an ambulance admissionto the ED with a three day history of chest pain, shortness of breath and one episode of syncope which brought him to the ED. Over the course of his admission a variety of treatment modalities were used successfully to alleviate the problem. More notable from a nursing perspective was the use of diagnostic tools as an interpretation to guide his care and provide a platform from which a deeper understanding and appreciation of the intricacies the critically ill patient often presents. Conclusion We found the use of case review very enlightening in understanding the disease process and the decision-making that accompanies this. Whilst our patient was successfully rehabilitated home, we learnt a lot from the experience which has been most beneficial in supporting our understanding of pulmonary embolism.
Resumo:
Emphysema is caused by exposure to cigarette smoking as well as alpha1-antitrypsin deficiency. It has been estimated to cost the National Health Service (NHS) in excess of £800 million per year in related health care costs. The challenges for Critical Care nurses are those associated with dynamic hyperinflation, Auto-PEEP, malnutrition and the weaning from invasive and non-invasive mechanical ventilation. In this paper we consider the impact of the pathophysiology of emphysema, its effects on other body systems as well as the impact acute exacerbations have when patients are admitted to the Intensive Care Unit.
Resumo:
This thesis described the synthesis of an L-leucine conjugate of the biodegradable polymer, chitosan and its potential application for the development of controlled release nanoparticulate dry powder inhaler (DPI) formulations. The study demonstrated that the physicochemical properties of conjugated chitosan nanoparticles had favourable effects on the dispersibility and controlled release profile of a model drug. The toxicity profile of the nanoparticulate formulation revealed promising outcome for its use in pulmonary delivery. The chitosan conjugate produced in this project would be useful for the application of polymer nanoparticulate systems for efficient lung delivery of drugs.
Resumo:
Objective To determine bronchoalveolar lavage (BAL) levels of 3 innate immunity components (human alpha-defensin-2 [hBD2], mannose-binding lectin [MBL], and surfactant protein-A [SP-A], the relationship with airway neutrophilia and infection, and cytokine production of stimulated BAL cells in children with current protracted bacterial bronchitis (PBB), children with resolved PBB (PBB well), and controls. Study design BAL of 102 children (mean age 2.8 years) fulfilling predefined criteria of current PBB (n=61), PBB well (n=20), and controls (n=21) was cultured (quantitative bacteriology) and viruses examined by polymerase chain reaction. hBD2, MBL, and SP-A were measured, and cytokine production of lipopolysaccharide-stimulated BAL cells were determined. Results Median hBD2 and MBL levels were significantly higher in the current PBB group (hBD2 = 164.4, IQR 0-435.5pg/mL; MBL = 1.7, 0.4-4ng/mL) than in the PBB well group (hBD2 = 0, IQR 0-85.2; MBL = 0.6, IQR 0.03-2.9) and controls (hBD2 = 3.6, IQR 0-126; MBL = 0.4, IQR 0.02-79). hBD2 was significantly higher in children with airway infection (n = 54; median 76.9, IQR 0-397.3) compared with those without (n = 48; 0, IQR 0-236.3), P=0.04. SP-A levels and cytokine production of stimulated BAL cells were similar between groups. Conclusion In children's airways, hBD2, but not MBL and SP-A, relates to inflammation and infection. In children with PBB, mechanisms involving airway hBD2 and MBL are augmented. These pulmonary innate immunity components and the ability of BAL cells to respond to stimuli are unlikely to be deficient.
Resumo:
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by lung endothelial dysfunction and vascular remodeling. Recently, bone marrow progenitor cells have been localized to PAH lungs, raising the question of their role in disease progression. Independently, serotonin (5-HT) and its receptors have been identified as contributors to the PAH pathogenesis. We hypothesized that 1 of these receptors, 5-HT(2B), is involved in bone marrow stem cell mobilization that participates in the development of PAH and pulmonary vascular remodeling. A first study revealed expression of 5-HT(2B) receptors by circulating c-kit(+) precursor cells, whereas mice lacking 5-HT(2B) receptors showed alterations in platelets and monocyte-macrophage numbers, and in myeloid lineages of bone marrow. Strikingly, mice with restricted expression of 5-HT(2B) receptors in bone marrow cells developed hypoxia or monocrotaline-induced increase in pulmonary pressure and vascular remodeling, whereas restricted elimination of 5-HT(2B) receptors on bone marrow cells confers a complete resistance. Moreover, ex vivo culture of human CD34(+) or mice c-kit(+) progenitor cells in the presence of a 5-HT(2B) receptor antagonist resulted in altered myeloid differentiation potential. Thus, we demonstrate that activation of 5-HT(2B) receptors on bone marrow lineage progenitors is critical for the development of PAH.