937 resultados para Pseudo-Differential Boundary Problems
Resumo:
At head of title: COO-415-1012.
Resumo:
Includes bibliographical references (20).
Resumo:
Mode of access: Internet.
Resumo:
"Contract N7 onr-358, T. O. I., NR-041-032."
Resumo:
In this paper, we are concerned with determining values of lambda, for which there exist positive solutions of the nonlinear eigenvalue problem [GRAPHICS] where a, b, c, d is an element of [0, infinity), xi(i) is an element of (0, 1), alpha(i), beta(i) is an element of [0 infinity) (for i is an element of {1, ..., m - 2}) are given constants, p, q is an element of C ([0, 1], (0, infinity)), h is an element of C ([0, 1], [0, infinity)), and f is an element of C ([0, infinity), [0, infinity)) satisfying some suitable conditions. Our proofs are based on Guo-Krasnoselskii fixed point theorem. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
A CSSL- type modular FORTRAN package, called ACES, has been developed to assist in the simulation of the dynamic behaviour of chemical plant. ACES can be harnessed, for instance, to simulate the transients in startups or after a throughput change. ACES has benefited from two existing simulators. The structure was adapted from ICL SLAM and most plant models originate in DYFLO. The latter employs sequential modularisation which is not always applicable to chemical engineering problems. A novel device of twice- round execution enables ACES to achieve general simultaneous modularisation. During the FIRST ROUND, STATE-VARIABLES are retrieved from the integrator and local calculations performed. During the SECOND ROUND, fresh derivatives are estimated and stored for simultaneous integration. ACES further includes a version of DIFSUB, a variable-step integrator capable of handling stiff differential systems. ACES is highly formalised . It does not use pseudo steady- state approximations and excludes inconsistent and arbitrary features of DYFLO. Built- in debug traps make ACES robust. ACES shows generality, flexibility, versatility and portability, and is very convenient to use. It undertakes substantial housekeeping behind the scenes and thus minimises the detailed involvement of the user. ACES provides a working set of defaults for simulation to proceed as far as possible. Built- in interfaces allow for reactions and user supplied algorithms to be incorporated . New plant models can be easily appended. Boundary- value problems and optimisation may be tackled using the RERUN feature. ACES is file oriented; a STATE can be saved in a readable form and reactivated later. Thus piecewise simulation is possible. ACES has been illustrated and verified to a large extent using some literature-based examples. Actual plant tests are desirable however to complete the verification of the library. Interaction and graphics are recommended for future work.
Resumo:
The first part of the thesis compares Roth's method with other methods, in particular the method of separation of variables and the finite cosine transform method, for solving certain elliptic partial differential equations arising in practice. In particular we consider the solution of steady state problems associated with insulated conductors in rectangular slots. Roth's method has two main disadvantages namely the slow rate of convergence of the double Fourier series and the restrictive form of the allowable boundary conditions. A combined Roth-separation of variables method is derived to remove the restrictions on the form of the boundary conditions and various Chebyshev approximations are used to try to improve the rate of convergence of the series. All the techniques are then applied to the Neumann problem arising from balanced rectangular windings in a transformer window. Roth's method is then extended to deal with problems other than those resulting from static fields. First we consider a rectangular insulated conductor in a rectangular slot when the current is varying sinusoidally with time. An approximate method is also developed and compared with the exact method.The approximation is then used to consider the problem of an insulated conductor in a slot facing an air gap. We also consider the exact method applied to the determination of the eddy-current loss produced in an isolated rectangular conductor by a transverse magnetic field varying sinusoidally with time. The results obtained using Roth's method are critically compared with those obtained by other authors using different methods. The final part of the thesis investigates further the application of Chebyshdev methods to the solution of elliptic partial differential equations; an area where Chebyshev approximations have rarely been used. A poisson equation with a polynomial term is treated first followed by a slot problem in cylindrical geometry.
Resumo:
Differential clinical diagnosis of the parkinsonian syndromes, viz., Parkinson’s disease (PD), progressive supranuclear palsy (PSP), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA) can be difficult. Eye movement problems, however, are a chronic complication of many of these disorders and may be a useful aid to diagnosis. Hence, the presence in PSP of vertical supranuclear gaze palsy, fixation instability, lid retraction, blepharospasm, and apraxia of eyelid opening and closing is useful in separating PD from PSP. Moreover, atypical features of PSP include slowing of upward saccades, moderate slowing of downward saccades, the presence of a full range of voluntary vertical eye movements, a curved trajectory of oblique saccades, and absence of square-wave jerks. Downgaze palsy is probably the most useful diagnostic clinical symptom of PSP. By contrast, DLB patients are specifically impaired in both reflexive and saccadic execution and in the performance of more complex saccadic eye movement tasks. Problems in convergence in DLB are also followed by akinesia and rigidity. Abnormal ocular fixation may occur in a significant proportion of MSA patients along with excessive square-wave jerks, a mild supranuclear gaze palsy, a gaze-evoked nystagmus, a positioning down-beat nystagmus, mild-moderate saccadic hypometria, impaired smooth pursuit movements, and reduced vestibulo-ocular reflex (VOR) suppression. There may be considerable overlap between the eye movement problems characteristic of the various parkinsonian disorders, but taken together with other signs and symptoms, can be a useful aid in differential diagnosis, especially in the separation of PD and PSP.
Resumo:
In this paper, we consider analytical and numerical solutions to the Dirichlet boundary-value problem for the biharmonic partial differential equation on a disc of finite radius in the plane. The physical interpretation of these solutions is that of the harmonic oscillations of a thin, clamped plate. For the linear, fourth-order, biharmonic partial differential equation in the plane, it is well known that the solution method of separation in polar coordinates is not possible, in general. However, in this paper, for circular domains in the plane, it is shown that a method, here called quasi-separation of variables, does lead to solutions of the partial differential equation. These solutions are products of solutions of two ordinary linear differential equations: a fourth-order radial equation and a second-order angular differential equation. To be expected, without complete separation of the polar variables, there is some restriction on the range of these solutions in comparison with the corresponding separated solutions of the second-order harmonic differential equation in the plane. Notwithstanding these restrictions, the quasi-separation method leads to solutions of the Dirichlet boundary-value problem on a disc with centre at the origin, with boundary conditions determined by the solution and its inward drawn normal taking the value 0 on the edge of the disc. One significant feature for these biharmonic boundary-value problems, in general, follows from the form of the biharmonic differential expression when represented in polar coordinates. In this form, the differential expression has a singularity at the origin, in the radial variable. This singularity translates to a singularity at the origin of the fourth-order radial separated equation; this singularity necessitates the application of a third boundary condition in order to determine a self-adjoint solution to the Dirichlet boundary-value problem. The penultimate section of the paper reports on numerical solutions to the Dirichlet boundary-value problem; these results are also presented graphically. Two specific cases are studied in detail and numerical values of the eigenvalues are compared with the results obtained in earlier studies.
Resumo:
In this study, we investigate the problem of reconstruction of a stationary temperature field from given temperature and heat flux on a part of the boundary of a semi-infinite region containing an inclusion. This situation can be modelled as a Cauchy problem for the Laplace operator and it is an ill-posed problem in the sense of Hadamard. We propose and investigate a Landweber-Fridman type iterative method, which preserve the (stationary) heat operator, for the stable reconstruction of the temperature field on the boundary of the inclusion. In each iteration step, mixed boundary value problems for the Laplace operator are solved in the semi-infinite region. Well-posedness of these problems is investigated and convergence of the procedures is discussed. For the numerical implementation of these mixed problems an efficient boundary integral method is proposed which is based on the indirect variant of the boundary integral approach. Using this approach the mixed problems are reduced to integral equations over the (bounded) boundary of the inclusion. Numerical examples are included showing that stable and accurate reconstructions of the temperature field on the boundary of the inclusion can be obtained also in the case of noisy data. These results are compared with those obtained with the alternating iterative method.
Resumo:
An antagonistic differential game of hyperbolic type with a separable linear vector pay-off function is considered. The main result is the description of all ε-Slater saddle points consisting of program strategies, program ε-Slater maximins and minimaxes for each ε ∈ R^N > for this game. To this purpose, the considered differential game is reduced to find the optimal program strategies of two multicriterial problems of hyperbolic type. The application of approximation enables us to relate these problems to a problem of optimal program control, described by a system of ordinary differential equations, with a scalar pay-off function. It is found that the result of this problem is not changed, if the players use positional or program strategies. For the considered differential game, it is interesting that the ε-Slater saddle points are not equivalent and there exist two ε-Slater saddle points for which the values of all components of the vector pay-off function at one of them are greater than the respective components of the other ε-saddle point.
Resumo:
An iterative method for the parabolic Cauchy problem in planar domains having a finite number of corners is implemented based on boundary integral equations. At each iteration, mixed well-posed problems are solved for the same parabolic operator. The presence of corner points renders singularities of the solutions to these mixed problems, and this is handled with the use of weight functions together with, in the numerical implementation, mesh grading near the corners. The mixed problems are reformulated in terms of boundary integrals obtained via discretization of the time-derivative to obtain an elliptic system of partial differential equations. To numerically solve these integral equations a Nyström method with super-algebraic convergence order is employed. Numerical results are presented showing the feasibility of the proposed approach. © 2014 IMACS.
Resumo:
MSC 2010: 34A37, 34B15, 26A33, 34C25, 34K37
Resumo:
MSC 2010: 44A35, 35L20, 35J05, 35J25
Resumo:
Иван Димовски, Юлиан Цанков - Предложено е разширение на принципa на Дюамел. За намиране на явно решение на нелокални гранични задачи от този тип е развито операционно смятане основано върху некласическа двумерна конволюция. Пример от такъв тип е задачата на Бицадзе-Самарски.