957 resultados para Potassium fertilizers.
Resumo:
Tiivistelmä: Kuusen neulasanalyyttinen kaliumravitsemuksen arviointi eri vuodenaikoina
Resumo:
INTRODUCTION: The evaluation of a new drug in normotensive volunteers provides important pharmacodynamic and pharmacokinetic information as long as the compound has a specific mechanism of action which can be evaluated in healthy subjects as well as in patients. The purpose of the present paper is to discuss the results that have been obtained in normal volunteers with the specific angiotensin II receptor antagonist, losartan potassium. DOSE-FINDING: Over the last few years, studies in normotensive subjects have demonstrated that the minimal dose of losartan that produces maximal efficacy is 40-80 mg. Losartan has a long duration of action and its ability to produce a sustained blockade of the renin-angiotensin system is due almost exclusively to the active metabolite E3174. HORMONAL EFFECTS: Angiotensin II receptor blockade with losartan induces an expected increase in plasma renin activity and plasma angiotensin II levels. A decrease in plasma aldosterone levels has been found only with a high dose of losartan (120 mg). RENAL AND BLOOD PRESSURE EFFECTS: In normotensive subjects, losartan has little or no effect on blood pressure unless the subjects are markedly salt-depleted. Losartan causes no change in the glomerular filtration rate and either no modification or only a slight increase in renal blood flow. Losartan significantly increases urinary sodium excretion, however, and surprisingly produces a transient rise in urinary potassium excretion. Finally, losartan increases uric acid excretion and lowers plasma uric acid levels. CONCLUSIONS: These results suggest that losartan is an effective angiotensin II receptor antagonist in normal subjects. Its safety and clinical efficacy in hypertensive patients will be addressed in large clinical trials.
Resumo:
Selostus: Natriumpitoisuuden pienentäminen lihavalmisteissa korvaamalla natriumfosfaatti kaliumfosfaatilla
Resumo:
Abstract
Resumo:
Cotton (Gossypium hirsutum) is known to have a high requirement for K and to be very sensitive to low soil pH. Most of K reaches plant roots by diffusion in the soil. As K interacts with Ca and Mg, liming can interfere in K movement in the soil, affecting eventually the plant nutrition. The objective of this work was to study the effect of dolomitic lime and 0, 15, 30, 45 and 60 g kg-1 of K on the supply of K to cotton roots. Cotton plants were grown up to 40 days in 5 L pots containing a Dark Red Latosol (Typic Haplusthox) with 68% and 16% of sand and clay, respectively. There was an increase in dry matter yields and in K accumulation due to K fertilization. Root interception of soil K was also increased by K application, but was not affected by lime. Mass flow and diffusion increased linearly with K levels up to 60 mg kg-1, in pots with lime. In pots without lime the amount of K reaching the roots by diffusion increased up to 45 mg kg-1, but decreased at the highest K level. Accordingly, there was more K reaching the roots through mass flow at the highest K level. This happened because there were more fine roots in pots without lime, at the highest K level. As the roots grew closer, there was a stronger root competition leading to a decrease in the amount of K diffused to cotton roots.
Sweet orange trees grafted on selected rootstocks fertilized with nitrogen, phosphorus and potassium
Resumo:
The majority of citrus trees in Brazil are grafted on 'Rangpur lime' (Citrus limonia Osb.) rootstock. Despite its good horticultural performance, search for disease tolerant rootstock varieties to improve yield and longevity of citrus groves has increased. The objective of this work was to evaluate yield efficiency of sweet oranges on different rootstocks fertilized with N, P, and potassium. Tree growth was affected by rootstock varieties; trees on 'Swingle' citrumelo [Poncirus trifoliata (L.) Raf. × C. paradisi Macf.] presented the smallest canopy (13.3 m³ in the fifth year after tree planting) compared to those on 'Rangpur lime' and 'Cleopatra' mandarin [C. reshni (Hayata) hort. ex Tanaka] grown on the same grove. Although it was observed an overall positive relationship between canopy volume and fruit yield (R² = 0.95**), yield efficiency (kg m-3) was affected by rootstocks, which demonstrated 'Rangpur lime' superiority in relation to Cleopatra. Growth of citrus trees younger than 5-yr-old might be improved by K fertilization rates greater than currently recommended in Brazil, in soils with low K and subjected to nutrient leaching losses.
Resumo:
The objective of this work was to evaluate the effects of KMnO4 on the extension of postharvest life of 'Sunrise Golden' papaya, stored under modified atmosphere and refrigeration. Fruit with up to 10% yellow peel were harvested in a commercial orchard in Linhares, state of Espírito Santo, Brazil. Sets of three fruit (unit mass of 289.9±18.5 g) were wrapped in low-density polyethylene films (28 ¼m thick) containing sachets of KMnO4 at 0, 0.5, 1, 1.5, and 2 g per bag. The bags were sealed and stored at 10.4±0.9°C and 90±5% relative humidity for 25 days. After this period, the fruit were removed from the bags and maintained at 21±0.8°C and 90±5% relative humidity until complete ripening. Four days after bag sealing, CO2 concentration stabilized in all treatments, and was higher in bags without KMnO4. In all treatments, fruit reached the climacteric respiratory peak on the third day after bag removal, coinciding with peel color index of 3.5. Increasing the KMnO4 dose reduced the losses in fruit fresh matter, consistency and pulp electrolyte leakage. Potassium permanganate was effective in maintaining the fruit at the pre-climacteric stage during the 25-day storage, and did not interfere with normal ripening after bag removal.
Resumo:
Direction-selective retinal ganglion cells show an increased activity evoked by light stimuli moving in the preferred direction. This selectivity is governed by direction-selective inhibition from starburst amacrine cells occurring during stimulus movement in the opposite or null direction. To understand the intrinsic membrane properties of starburst cells responsible for direction-selective GABA release, we performed whole-cell recordings from starburst cells in mouse retina. Voltage-clamp recordings revealed prominent voltage-dependent K+ currents. The currents were mostly blocked by 1 mm TEA, activated rapidly at voltages more positive than -20 mV, and deactivated quickly, properties reminiscent of the currents carried by the Kv3 subfamily of K+ channels. Immunoblots confirmed the presence of Kv3.1 and Kv3.2 proteins in retina and immunohistochemistry revealed their expression in starburst cell somata and dendrites. The Kv3-like current in starburst cells was absent in Kv3.1-Kv3.2 knock-out mice. Current-clamp recordings showed that the fast activation of the Kv3 channels provides a voltage-dependent shunt that limits depolarization of the soma to potentials more positive than -20 mV. This provides a mechanism likely to contribute to the electrical isolation of individual starburst cell dendrites, a property thought essential for direction selectivity. This function of Kv3 channels differs from that in other neurons where they facilitate high-frequency repetitive firing. Moreover, we found a gradient in the intensity of Kv3.1b immunolabeling favoring proximal regions of starburst cells. We hypothesize that this Kv3 channel gradient contributes to the preference for centrifugal signal flow in dendrites underlying direction-selective GABA release from starburst amacrine cells.
Resumo:
The objective of this work was to investigate possible maternal effects on potassium content of common bean seeds, as well as to estimate the heritability and selection gains in early hybrid generations for this character and to evaluate the efficiency of genetic selection to improve the nutritional quality of common bean (Phaseolus vulgaris). Crosses with four cultivars from the Mesoamerican gene pool yielded the reciprocal F1 and F2 generations and the backcrossed populations (BCP1 and BCP2). The potassium content of the progenies was measured via nitric‑perchloric digestion and flame photometry. The potassium content in the tested progenies varied from 6.0 to 14.9 g kg-1 dry matter, and no significant maternal effect was observed. The narrow-sense heritability ranged from low (33.26%) to intermediate (43.05%). Partial dominance was observed for low potassium content in the seeds. No increase in potassium content was obtained through selection. Breeding common bean plants for increasing potassium content in seeds may be difficult because the local environment strongly influences the character.
Resumo:
The objective of this work was to adapt the application of electrolytic conductivity and potassium leaching tests to assess the viability of cryopreserved embryos of 'Anão Verde do Brasil de Jiqui' (AVeJBr) coconut. The zygotic embryos were excised, sterilized and subjected to four cryoprotectant treatments combined with three incubation times (12, 16 and 20 hours), totaling 12 treatments. The pre-treatment of mature zygotic embryos of AVeJBr coconut using a cryoprotectant with 1.75 mol L-1 of sucrose + 15% glycerol for 12 and 16 hours promoted lower embryo humidity and increased viability in electrolytic conductivity and potassium leaching tests. Samples with ten embryos are sufficient for electrolytic conductivity analysis in cryopreserved or non-cryopreserved AVeJBr coconut zygotic embryos. The 4 to 8 hour imbibition period of the embryos is promising for the electrolytic conductivity analysis of non-cryopreserved mature zygotic embryos of AVeJBr coconut.
Resumo:
Astrocytes fulfill a central role in regulating K+ and glutamate, both released by neurons into the extracellular space during activity. Glial glutamate uptake is a secondary active process that involves the influx of three Na+ ions and one proton and the efflux of one K+ ion. Thus, intracellular K+ concentration ([K+]i) is potentially influenced both by extracellular K+ concentration ([K+]o) fluctuations and glutamate transport in astrocytes. We evaluated the impact of these K+ ion movements on [K+]i in primary mouse astrocytes by microspectrofluorimetry. We established a new noninvasive and reliable approach to monitor and quantify [K+]i using the recently developed K+ sensitive fluorescent indicator Asante Potassium Green-1 (APG-1). An in situ calibration procedure enabled us to estimate the resting [K+]i at 133±1 mM. We first investigated the dependency of [K+]i levels on [K+]o. We found that [K+]i followed [K+]o changes nearly proportionally in the range 3-10 mM, which is consistent with previously reported microelectrode measurements of intracellular K+ concentration changes in astrocytes. We then found that glutamate superfusion caused a reversible drop of [K+]i that depended on the glutamate concentration with an apparent EC50 of 11.1±1.4 µM, corresponding to the affinity of astrocyte glutamate transporters. The amplitude of the [K+]i drop was found to be 2.3±0.1 mM for 200 µM glutamate applications. Overall, this study shows that the fluorescent K+ indicator APG-1 is a powerful new tool for addressing important questions regarding fine [K+]i regulation with excellent spatial resolution.
Resumo:
The objective of this work was to evaluate the utilization by corn plants of P from triple superphosphate fertilizer labeled with 32P (32P‑TSP), and of P from soil as affected by N rates and by the green manures (GM) sunn hemp (Crotalaria juncea) and millet (Pennisetum glaucum). The experiment was carried out using pots filled with 5 kg Oxisol (Rhodic Hapludox). A completely randomized design was used, in a 4x4x2 factorial arrangement, with four replicates. The treatments were: four P rates as TSP (0, 0.175, 0.350, and 0.700 g P per pot); four N rates as urea (0, 0.75, 1.50, and 2.25 g N per pot); and sunn hemp or millet as green manure. The additions of N and P by the GM were taken into account. After grain physiologic maturation, corn dry matter, P contents, accumulated P, and P recovery in the different treatments were measured. 32P‑TSP recovery by corn increased with N increasing rates, and decreased with increasing rates of 32P‑TSP. The mineral fertilizer provides most of the accumulated P by corn plants. The recovery of 32P‑TSP by corn was 13.12% in average. The green manure species influence the assimilation of 32P‑TSP by the plants.
Resumo:
Scand J Clin Lab Invest. 2007 Aug 1;:1-11 [Epub ahead of print]
Resumo:
Mutations in α, β, or γ subunits of the epithelial sodium channel (ENaC) can downregulate ENaC activity and cause a severe salt-losing syndrome with hyperkalemia and metabolic acidosis, designated pseudohypoaldosteronism type 1 in humans. In contrast, mice with selective inactivation of αENaC in the collecting duct (CD) maintain sodium and potassium balance, suggesting that the late distal convoluted tubule (DCT2) and/or the connecting tubule (CNT) participates in sodium homeostasis. To investigate the relative importance of ENaC-mediated sodium absorption in the CNT, we used Cre-lox technology to generate mice lacking αENaC in the aquaporin 2-expressing CNT and CD. Western blot analysis of microdissected cortical CD (CCD) and CNT revealed absence of αENaC in the CCD and weak αENaC expression in the CNT. These mice exhibited a significantly higher urinary sodium excretion, a lower urine osmolality, and an increased urine volume compared with control mice. Furthermore, serum sodium was lower and potassium levels were higher in the genetically modified mice. With dietary sodium restriction, these mice experienced significant weight loss, increased urinary sodium excretion, and hyperkalemia. Plasma aldosterone levels were significantly elevated under both standard and sodium-restricted diets. In summary, αENaC expression within the CNT/CD is crucial for sodium and potassium homeostasis and causes signs and symptoms of pseudohypoaldosteronism type 1 if missing.
Resumo:
Haloesterification of diverse diols with various carboxylic acids was achieved using potassium halides (KX) as the only halide source in ionic liquids. The best yield was obtained in [BMIM][PF6] when 1,2-octanediol, palmitic acid and KBr were used. This yield was 85% and the regioisomer with the bromine in primary position was present in a 75:25 ratio. The regioisomeric ratio could be improved using either KCl or some phenylcarboxylic acids. [BMIM][PF6] acts as both reaction media and catalyst of the reaction. To the best of our knowledge, this type of combined reaction using an ionic liquid is unprecedented. The other solvents tested did not lead either to the same yield or to the same regioisomeric ratio.