975 resultados para Population Cells
Resumo:
Cancer progression is dependent, in part, on interactions between tumor cells and the host microenvironment. During pregnancy, physiological changes occur that include inflammation and reduced immunity, both of which can promote tumor growth. Accordingly, tumors are observed to be more aggressive and to have greater proclivity toward metastasis during pregnancy. In this work, myeloid-derived suppressor cells (MDSC), a population of heterogeneous and pluripotent cells that can down-regulate immune responses during pathological conditions, were studied in the context of mouse and human gestation. The gene expression profile of mouse MDSC has been shown to differ in pregnant and virgin mice, and the profile in pregnant animals bears similarity to that of MDSC associated with the tumor microenvironment. Common induced genes include Fibronectin1 and Olfactomedin4, which are known to be involved in extracellular matrix remodeling and tissue permissiveness to tumor cells implantation. Our observations suggest that mouse MDSC may represent a shared regulatory mechanism of tissue permissiveness that occurs during the physiological state of gestation and tumor growth. Pregnancy-associated changes in immunosuppressive myeloid cell activity have also been studied in humans. We show that CD33+ myeloid cells isolated from PBMC (peripheral blood mononuclear cells) of pregnant women are more strongly immunosuppressive on T cells than CD33+ cells removed from non-pregnant subjects. During murine gestation, decreased natural killer (NK) cell activity is responsible, at least in part, for the increase in experimental metastasis. However, although peripheral blood NK cell numbers and cytotoxicity were slightly reduced in pregnant women, neither appeared to be regulated by CD33+ cells. Nevertheless, based on its observed suppression of T cell responses, the CD33+ PBMC subset appears to be an appropriate myeloid cell population to study in order to elucidate mechanisms of immune regulation that occur during human pregnancy. Our findings regarding the immunosuppressive function of CD33+cells and the role of NK cells during human pregnancy are consistent with the notion that changes in the function of the immune system participate in the constitution of a permissive soil for tumour progression.
Resumo:
SummaryLow-density lipoproteins (LDLs) have an important physiological role in organism transporting cholesterol and other fatty substances to target tissues. However, elevated LDL levels in the blood are associated with the formation of arterial plaques and consequently atherosclerosis. It is therefore important to characterize the intracellular pathways induced upon LDL stimulation as they might be involved in the pathological properties of these lipoproteins. It has been previously found that LDL stimulation of mouse embryonic fibroblasts activates p38 mitogen activated protein kinases (MAPKs). This leads to cell spreading and increase in the wound healing capabilities of the cells. These two responses might occur within atherosclerotic plaques.The aim of this project is to reveal the missing links between LDL particle and activation of p38 MAPK kinase. As previously shown in our lab activation of p38 MAPK kinase by the LDL particles occur independently of classical LDL receptor (LDLR). In this study we have shown that scavenger receptor type Β class I (SR-BI) is responsible for the signal transduction from the LDLs to the p38 MAPK. We have also shown that Mitogen activated kinase kinases (MKKs) that can directly activate ρ 38 MAPK in these conditions are MKK3 and MKK6 but not MKK4. We have also tested some of the intermediate components of the pathway like Ras and PI3 kinase but found that they do not play a role.The data obtained in this study showed a part of molecular mechanism responsible for p38 MAPK activation and subsequent wound healing and can contribute to our knowledge on function of the fibroblasts in the development of the atherosclerotic plaques.Diabetes Mellitus is a condition caused by disordered metabolism of blood glucose level. It is one of the most commonly spread disease in the western world, with the incidence reaching 8% of population in United States. Two most common types of diabetes are type 1 and 2 that differs slightly in the mechanism of the development. However in the basis of both types lies the cell death of pancreatic beta cells. The aim of this work is to improve beta cells survival in different pathophysiological settings. This could be extrapolated to the conditions in which Diabetes develops in humans. We decided to use RasGAP- derived fragment Ν with its strong antiapoptotic effect in beta cells. In our lab we have demonstrated that in the mild stress conditions RasGAP can be cleaved by caspases at the position 455 producing two fragments, fragment Ν and fragment C. Fragment Ν exerts
Resumo:
The factors responsible for the phenotypic heterogeneity of memory CD4 T cells are unclear. In the present study, we have identified a third population of memory CD4 T cells characterized as CD45RA(+)CCR7(-) that, based on its replication history and the homeostatic proliferative capacity, was at an advanced stage of differentiation. Three different phenotypic patterns of memory CD4 T cell responses were delineated under different conditions of antigen (Ag) persistence and load using CD45RA and CCR7 as markers of memory T cells. Mono-phenotypic CD45RA(-)CCR7(+) or CD45RA(-)CCR7(-) CD4 T cell responses were associated with conditions of Ag clearance (tetanus toxoid-specific CD4 T cell response) or Ag persistence and high load (chronic HIV-1 and primary CMV infections), respectively. Multi-phenotypic CD45RA(-)CCR7(+), CD45RA(-)CCR7(-) and CD45RA(+)CCR7(-) CD4 T cell responses were associated with protracted Ag exposure and low load (chronic CMV, EBV and HSV infections and HIV-1 infection in long-term nonprogressors). The mono-phenotypic CD45RA(-)CCR7(+) response was typical of central memory (T(CM)) IL-2-secreting CD4 T cells, the mono-phenotypic CD45RA(-)CCR7(-) response of effector memory (T(EM)) IFN-gamma-secreting CD4 T cells and the multi-phenotypic response of both IL-2- and IFN-gamma-secreting cells. The present results indicate that the heterogeneity of different Ag-specific CD4 T cell responses is regulated by Ag exposure and Ag load.
Resumo:
Salt taste in mammals can trigger two divergent behavioural responses. In general, concentrated saline solutions elicit robust behavioural aversion, whereas low concentrations of NaCl are typically attractive, particularly after sodium depletion. Notably, the attractive salt pathway is selectively responsive to sodium and inhibited by amiloride, whereas the aversive one functions as a non-selective detector for a wide range of salts. Because amiloride is a potent inhibitor of the epithelial sodium channel (ENaC), ENaC has been proposed to function as a component of the salt-taste-receptor system. Previously, we showed that four of the five basic taste qualities-sweet, sour, bitter and umami-are mediated by separate taste-receptor cells (TRCs) each tuned to a single taste modality, and wired to elicit stereotypical behavioural responses. Here we show that sodium sensing is also mediated by a dedicated population of TRCs. These taste cells express the epithelial sodium channel ENaC, and mediate behavioural attraction to NaCl. We genetically engineered mice lacking ENaCalpha in TRCs, and produced animals exhibiting a complete loss of salt attraction and sodium taste responses. Together, these studies substantiate independent cellular substrates for all five basic taste qualities, and validate the essential role of ENaC for sodium taste in mice.
Resumo:
In the present study, we have investigated the distribution of HIV-specific and HIV-infected CD4 T cells within different populations of memory CD4 T cells isolated from lymph nodes of viremic HIV-infected subjects. Four memory CD4 T cell populations were identified on the basis of the expression of CXCR5, PD-1, and Bcl-6: CXCR5(-)PD-1(-)Bcl-6(-), CXCR5(+)PD-1(-)Bcl-6(-), CXCR5(-)PD-1(+)Bcl-6(-), and CXCR5(+)PD-1(+)Bcl-6(+). On the basis of Bcl-6 expression and functional properties (IL-21 production and B cell help), the CXCR5(+)PD-1(+)Bcl-6(+) cell population was considered to correspond to the T follicular helper (Tfh) cell population. We show that Tfh and CXCR5(-)PD-1(+) cell populations are enriched in HIV-specific CD4 T cells, and these populations are significantly increased in viremic HIV-infected subjects as compared with healthy subjects. The Tfh cell population contained the highest percentage of CD4 T cells harboring HIV DNA and was the most efficient in supporting productive infection in vitro. Replication competent HIV was also readily isolated from Tfh cells in subjects with nonprogressive infection and low viremia (<1,000 HIV RNA copies). However, only the percentage of Tfh cells correlated with the levels of plasma viremia. These results demonstrate that Tfh cells serve as the major CD4 T cell compartment for HIV infection, replication, and production.
Resumo:
Dendritic cells (DCs) are leukocytes specialised in the uptake, processing, and presentation of antigen and fundamental in regulating both innate and adaptive immune functions. They are mainly localised at the interface between body surfaces and the environment, continuously scrutinising incoming antigen for the potential threat it may represent to the organism. In the respiratory tract, DCs constitute a tightly enmeshed network, with the most prominent populations localised in the epithelium of the conducting airways and lung parenchyma. Their unique localisation enables them to continuously assess inhaled antigen, either inducing tolerance to inoffensive substances, or initiating immunity against a potentially harmful pathogen. This immunological homeostasis requires stringent control mechanisms to protect the vital and fragile gaseous exchange barrier from unrestrained and damaging inflammation, or an exaggerated immune response to an innocuous allergen, such as in allergic asthma. During DC activation, there is upregulation of co-stimulatory molecules and maturation markers, enabling DC to activate naïve T cells. This activation is accompanied by chemokine and cytokine release that not only serves to amplify innate immune response, but also determines the type of effector T cell population generated. An increasing body of recent literature provides evidence that different DC subpopulations, such as myeloid DC (mDC) and plasmacytoid DC (pDC) in the lungs occupy a key position at the crossroads between tolerance and immunity. This review aims to provide the clinician and researcher with a summary of the latest insights into DC-mediated pulmonary immune regulation and its relevance for developing novel therapeutic strategies for various disease conditions such as infection, asthma, COPD, and fibrotic lung disease.
Resumo:
Background: Recent data have suggested that a population of CD4+ CD25high T cells, phenotypically characterized by the expression of CD45RO and CD127, is significantly expanded in stable liver and kidney transplant recipients and represents alloreactive T cells. We analyzed this putative new alloreactive cellular marker in various groups of kidney transplant recipients. Patients and methods: Flow cytometry was used to analyze the expression of CD25, CD45RO and CD127 on peripheral CD4+ T cells. Of 73 kidney recipients, 59 had a stable graft function under standard immunosuppressive therapy (IS), 5 had biopsy-proven chronic humoral rejection (CHR), 8 were stable under minimal IS and one was an operationally "tolerant" patient who had discontinued IS for more than 3 years. Sixty-six healthy subjects (HS) were studied as controls. Results: Overall, the alloreactive T cell population was found to be significantly increased in the 73 kidney recipients (mean ± SE: 15.03 ± 1.04% of CD4+ CD25high T cells) compared to HS (5.93 ± 0.39%) (p <0.001). In the 5 patients with CHR, this population was highly expanded (31.33 ± 4.16%), whereas it was comparable to HS in the 8 stable recipients receiving minimal IS (6.12 ± 0.86%), in 4 patients who had been switched to sirolimus (4.21 ± 0.53%) as well as in the unique "tolerant" recipient (4.69%). Intermediate levels (15.84 ± 0.93%) were found in the 55 recipients with stable graft function on standard CNI-based IS. Regulatory T cells, defined as CD4+ CD25high FoxP3+ CD127low, were found to be significantly reduced in all recipients except in those with minimal or no IS, and this reduction was particularly striking in recipients with CHR. Conclusion: After kidney transplantation, an alloreactive T cell population was found to be significantly expanded and it correlates with the clinical status of the recipients. Interestingly, in stable patients with minimal (or no) IS as well as in patients on sirolimus, alloreactive T cells were comparable the healthy controls. Measuring circulating CD4+ CD25high CD45RO+ CD127high T cells may become a useful monitoring tool after transplantation.
Resumo:
BACKGROUND: In contrast to wild type, interleukin-10-deficient (IL-10(-/-)) mice are able to clear Helicobacter infection. In this study, we investigated the immune response of IL-10(-/-) mice leading to the reduction of Helicobacter infection. MATERIALS AND METHODS: We characterized the immune responses of Helicobacter felis-infected IL-10(-/-) mice by studying the systemic antibody and cellular responses toward Helicobacter. We investigated the role of CD4(+) T cells in the Helicobacter clearance by injecting H. felis-infected IL-10(-/-) mice with anti-CD4 depleting antibodies. To examine the role of mast cells in Helicobacter clearance, we constructed and infected mast cells and IL-10 double-deficient mice. RESULTS: Reduction of Helicobacter infection in IL-10(-/-) mice is associated with strong humoral (fivefold higher serum antiurease antibody titers were measured in IL-10(-/-) in comparison to wild-type mice, p < .008) and cellular (urease-stimulated splenic CD4(+) T cells isolated from infected IL-10(-/-) mice produce 150-fold more interferon-gamma in comparison to wild-type counterparts, p < .008) immune responses directed toward Helicobacter. Depletion of CD4(+) cells from Helicobacter-infected IL-10(-/-) mice lead to the loss of bacterial clearance (rapid urease tests are threefold higher in CD4(+) depleted IL-10(-/-) in comparison to nondepleted IL-10(-/-) mice, p < .02). Mast cell IL-10(-/-) double-deficient mice clear H. felis infection, indicating that mast cells are unnecessary for the bacterial eradication in IL-10(-/-) mice. CONCLUSION: Taken together, these results suggest that CD4(+) cells are required for Helicobacter clearance in IL-10(-/-) mice. This reduction of Helicobacter infection is, however, not dependent on the mast cell population.
Resumo:
Although NK cells in the mouse are thought to develop in the bone marrow, a small population of NK cells in the thymus has been shown to derive from a GATA3-dependent pathway. Characteristically, thymic NK cells express CD127 and few Ly49 molecules and lack CD11b. Because these NK cells develop in the thymus, the question of their relationship to the T cell lineage has been raised. Using several different mouse models, we find that unlike T cells, thymic NK cells are not the progeny of Rorc-expressing progenitors and do not express Rag2 or rearrange the TCRγ locus. We further demonstrate that thymic NK cells develop independently of the Notch signaling pathway, supporting the idea that thymic NK cells represent bona fide NK cells that can develop independently of all T cell precursors.
Resumo:
Humans differ substantially with respect to susceptibility to human immunodeficiency virus type 1 (HIV-1). We evaluated variants of nine host genes participating in the viral life cycle for their role in modulating HIV-1 infection. Alleles were assessed ex vivo for their impact on viral replication in purified CD4 T cells from healthy blood donors (n = 128). Thereafter, candidate alleles were assessed in vivo in a cohort of HIV-1-infected individuals (n = 851) not receiving potent antiretroviral therapy. As a benchmark test, we tested 12 previously reported host genetic variants influencing HIV-1 infection as well as single nucleotide polymorphisms in the nine candidate genes. This led to the proposition of three alleles of PML, TSG101, and PPIA as potentially associated with differences in progression of HIV-1 disease. In a model considering the combined effects of new and previously reported gene variants, we estimated that their effect might be responsible for lengthening or shortening by up to 2.8 years the period from 500 CD4 T cells/mul to <200 CD4 T cells/mul.
Resumo:
Many currently used and candidate vaccine adjuvants are particulate in nature, but their mechanism of action is not well understood. Here, we show that particulate adjuvants, including biodegradable poly(lactide-co-glycolide) (PLG) and polystyrene microparticles, dramatically enhance secretion of interleukin-1beta (IL-1beta) by dendritic cells (DCs). The ability of particulates to promote IL-1beta secretion and caspase 1 activation required particle uptake by DCs and NALP3. Uptake of microparticles induced lysosomal damage, whereas particle-mediated enhancement of IL-1beta secretion required phagosomal acidification and the lysosomal cysteine protease cathepsin B, suggesting a role for lysosomal damage in inflammasome activation. Although the presence of a Toll-like receptor (TLR) agonist was required to induce IL-1beta production in vitro, injection of the adjuvants in the absence of TLR agonists induced IL-1beta production at the injection site, indicating that endogenous factors can synergize with particulates to promote inflammasome activation. The enhancement of antigen-specific antibody production by PLG microparticles was independent of NALP3. However, the ability of PLG microparticles to promote antigen-specific IL-6 production by T cells and the recruitment and activation of a population of CD11b(+)Gr1(-) cells required NALP3. Our data demonstrate that uptake of microparticulate adjuvants by DCs activates the NALP3 inflammasome, and this contributes to their enhancing effects on innate and antigen-specific cellular immunity.
Resumo:
Although important progresses have been achieved in the therapeutic management of transplant recipients, acute and chronic rejections remain the leading causes of premature graft loss after solid organ transplantation. This, together with the undesirable side effects of immunosuppressive drugs, has significant implications for the long-term outcome of transplant recipients. Thus, a better understanding of the immunological events occurring after transplantation is essential. The immune system plays an ambivalent role in the outcome of a graft. On one hand, some T lymphocytes with effector functions (called alloreactive) can mediate a cascade of events eventually resulting in the rejection, either acute or chronic, of the grafted organ ; on the other hand, a small subset of T lymphocytes, called regulatory T cells, has been shown to be implicated in the control of these harmful rejection responses, among other things. Thus, we focused our interest on the study of the balance between circulating effectors (alloreactive) and regulatory T lymphocytes, which seems to play an important role in the outcome of allografts, in the context of kidney transplantation. The results were correlated with various variables such as the clinical status of the patients, the immunosuppressive drugs used as induction or maintenance agents, and past or current episodes of rejection. We observed that the percentage of the alloreactive T lymphocyte population was correlated with the clinical status of the kidney transplant recipients. Indeed, the highest percentage was found in patients suffering from chronic humoral rejection, whilst patients on no or only minimal immunosuppressive treatment or on sirolimus-based immunosuppression displayed a percentage comparable to healthy non-transplanted individuals. During the first year after renal transplantation, the balance between effectors and regulatory T lymphocytes was tipped towards the detrimental effector immune response, with the two induction agents studied (thymoglobulin and basiliximab). Overall, these results indicate that monitoring these immunological parameters may be very useful for the clinical follow-up of transplant recipients ; these tests may contribute to identify patients who are more likely to develop rejection or, on the contrary, who tolerate well their graft, in order to adapt the immunosuppressive treatment on an individual basis.
Resumo:
The consequences of variable rates of clonal reproduction on the population genetics of neutral markers are explored in diploid organisms within a subdivided population (island model). We use both analytical and stochastic simulation approaches. High rates of clonal reproduction will positively affect heterozygosity. As a consequence, nearly twice as many alleles per locus can be maintained and population differentiation estimated as F(ST) value is strongly decreased in purely clonal populations as compared to purely sexual ones. With increasing clonal reproduction, effective population size first slowly increases and then points toward extreme values when the reproductive system tends toward strict clonality. This reflects the fact that polymorphism is protected within individuals due to fixed heterozygosity. Contrarily, genotypic diversity smoothly decreases with increasing rates of clonal reproduction. Asexual populations thus maintain higher genetic diversity at each single locus but a lower number of different genotypes. Mixed clonal/sexual reproduction is nearly indistinguishable from strict sexual reproduction as long as the proportion of clonal reproduction is not strongly predominant for all quantities investigated, except for genotypic diversities (both at individual loci and over multiple loci).
Resumo:
The thymus develops from the third pharyngeal pouch of the anterior gut and provides the necessary environment for thymopoiesis (the process by which thymocytes differentiate into mature T lymphocytes) and the establishment and maintenance of self-tolerance. It contains thymic epithelial cells (TECs) that form a complex three-dimensional network organized in cortical and medullary compartments, the organization of which is notably different from simple or stratified epithelia. TECs have an essential role in the generation of self-tolerant thymocytes through expression of the autoimmune regulator Aire, but the mechanisms involved in the specification and maintenance of TECs remain unclear. Despite the different embryological origins of thymus and skin (endodermal and ectodermal, respectively), some cells of the thymic medulla express stratified-epithelium markers, interpreted as promiscuous gene expression. Here we show that the thymus of the rat contains a population of clonogenic TECs that can be extensively cultured while conserving the capacity to integrate in a thymic epithelial network and to express major histocompatibility complex class II (MHC II) molecules and Aire. These cells can irreversibly adopt the fate of hair follicle multipotent stem cells when exposed to an inductive skin microenvironment; this change in fate is correlated with robust changes in gene expression. Hence, microenvironmental cues are sufficient here to re-direct epithelial cell fate, allowing crossing of primitive germ layer boundaries and an increase in potency.
Resumo:
SUMMARY IN FRENCH Les cellules souches sont des cellules indifférenciées capables a) de proliférer, b) de s'auto¬renouveller, c) de produire des cellules différenciées, postmitotiques et fonctionnelles (multipotencialité), et d) de régénérer le tissu après des lésions. Par exemple, les cellules de souches hematopoiétiques, situées dans la moelle osseuse, peuvent s'amplifier, se diviser et produire diverses cellules différenciées au cours de la vie, les cellules souches restant dans la moelle osseuse et consentant leur propriété. Les cellules souches intestinales, situées dans la crypte des microvillosités peuvent également régénérer tout l'intestin au cours de la vie. La rétine se compose de six classes de neurones et d'un type de cellule gliale. Tous ces types de cellules sont produits par un progéniteur rétinien. Le pic de production des photorécepteurs se situe autour des premiers jours postnatals chez la souris. A cette période la rétine contient les cellules hautement prolifératives. Dans cette étude, nous avons voulu analyser le phénotype de ces cellules et leur potentiel en tant que cellules souches ou progénitrices. Nous nous sommes également concentrés sur l'effet de certains facteurs épigéniques sur leur destin cellulaire. Nous avons observé que toutes les cellules prolifératives isolées à partir de neurorétines postnatales de souris expriment le marqueur de glie radiaire RC2, ainsi que des facteurs de transcription habituellement trouvés dans la glie radiaire (Mash1, Pax6), et répondent aux critères des cellules souches : une capacité élevée d'expansion, un état indifférencié, la multipotencialité (démontrée par analyse clonale). Nous avons étudié la différentiation des cellules dans différents milieux de culture. En l'absence de sérum, l'EGF induit l'expression de la β-tubulin-III, un marqueur neuronal, et l'acquisition d'une morphologie neuronale, ceci dans 15% des cellules présentes. Nous avons également analysé la prolifération de cellules. Seulement 20% des cellules incorporent le bromodéoxyuridine (BrdU) qui est un marqueur de division cellulaire. Ceci démontre que l'EGF induit la formation des neurones sans une progression massive du cycle cellulaire. Par ailleurs, une stimulation de 2h d'EGF est suffisante pour induire la différentiation neuronale. Certains des neurones formés sont des cellules ganglionnaires rétiniennes (GR), comme l'indique l'expression de marqueurs de cellules ganglionnaires (Ath5, Brn3b et mélanopsine), et dans de rare cas d'autres neurones rétiniens ont été observés (photorécepteurs (PR) et cellules bipolaires). Nous avons confirmé que les cellules souches rétiniennes tardives n'étaient pas restreintes au cours du temps et qu'elles conservent leur multipotencialité en étant capables de générer des neurones dits précoces (GR) ou tardifs (PR). Nos résultats prouvent que l'EGF est non seulement un facteur contrôlant le développement glial, comme précédemment démontré, mais également un facteur efficace de différentiation pour les neurones rétiniens, du moins in vitro. D'autre part, nous avons voulu établir si l'oeil adulte humain contient des cellules souches rétiniennes (CSRs). L'oeil de certains poissons ou amphibiens continue de croître pendant l'âge adulte du fait de l'activité persistante des cellules souches rétiniennes. Chez les poissons, le CSRs se situe dans la marge ciliaire (CM) à la périphérie de la rétine. Bien que l'oeil des mammifères ne se développe plus pendant la vie d'adulte, plusieurs groupes ont prouvé que l'oeil de mammifères adultes contient des cellules souches rétiniennes également dans la marge ciliaire plus précisément dans l'épithélium pigmenté et non dans la neurorétine. Ces CSRs répondent à certains critères des cellules souches. Nous avons identifié et caractérisé les cellules souches rétiniennes résidant dans l'oeil adulte humain. Nous avons prouvé qu'elles partagent les mêmes propriétés que leurs homologues chez les rongeurs c.-à-d. auto-renouvellement, amplification, et différenciation en neurones rétiniens in vitro et in vivo (démontré par immunocoloration et microarray). D'autre part, ces cellules peuvent être considérablement amplifiées, tout en conservant leur potentiel de cellules souches, comme indiqué par l'analyse de leur profil d'expression génique (microarray). Elles expriment également des gènes communs à diverses cellules souches: nucleostemin, nestin, Brni1, Notch2, ABCG2, c-kit et son ligand, aussi bien que cyclin D3 qui agit en aval de c-kit. Nous avons pu montré que Bmi1et Oct4 sont nécessaires pour la prolifération des CSRs confortant leur propriété de cellules souches. Nos données indiquent que la neurorétine postnatale chez la souris et l'épithélium pigmenté de la marge ciliaire chez l'humain adulte contiennent les cellules souches rétiniennes. En outre, nous avons développé un système qui permet d'amplifier et de cultiver facilement les CSRs. Ce modèle permet de disséquer les mécanismes impliqués lors de la retinogenèse. Par exemple, ce système peut être employé pour l'étude des substances ou des facteurs impliqués, par exemple, dans la survie ou dans la génération des cellules rétiniennes. Il peut également aider à disséquer la fonction de gènes ou les facteurs impliqués dans la restriction ou la spécification du destin cellulaire. En outre, dans les pays occidentaux, la rétinite pigmentaire (RP) touche 1 individu sur 3500 et la dégénérescence maculaire liée à l'âge (DMLA) affecte 1 % à 3% de la population âgée de plus de 60 ans. La génération in vitro de cellules rétiniennes est aussi un outil prometteur pour fournir une source illimitée de cellules pour l'étude de transplantation cellulaire pour la rétine. SUMMARY IN ENGLISH Stem cells are defined as undifferentiated cells capable of a) proliferation, b) self maintenance (self-renewability), c) production of many differentiated functional postmitotic cells (multipotency), and d) regenerating tissue after injury. For instance, hematopoietic stem cells, located in bone marrow, can expand, divide and generate differentiated cells into the diverse lineages throughout life, the stem cells conserving their status. In the villi crypt, the intestinal stem cells are also able to regenerate the intestine during their life time. The retina is composed of six classes of neurons and one glial cell. All these cell types are produced by the retinal progenitor cell. The peak of photoreceptor production is reached around the first postnatal days in rodents. Thus, at this stage the retina contains highly proliferative cells. In our research, we analyzed the phenotype of these cells and their potential as possible progenitor or stem cells. We also focused on the effect of epigenic factor(s) and cell fate determination. All the proliferating cells isolated from mice postnatal neuroretina harbored the radial glia marker RC2, expressed transcription factors usually found in radial glia (Mash 1, Pax6), and met the criteria of stem cells: high capacity of expansion, maintenance of an undifferentiated state, and multipotency demonstrated by clonal analysis. We analyzed the differentiation seven days after the transfer of the cells in different culture media. In the absence of serum, EGF led to the expression of the neuronal marker β-tubulin-III, and the acquisition of neuronal morphology in 15% of the cells. Analysis of cell proliferation by bromodeoxyuridine incorporation revealed that EGF mainly induced the formation of neurons without stimulating massively cell cycle progression. Moreover, a pulse of 2h EGF stimulation was sufficient to induce neuronal differentiation. Some neurons were committed to the retinal ganglion cell (RGC) phenotype, as revealed by the expression of retinal ganglion markers (Ath5, Brn3b and melanopsin), and in few cases to other retinal phenotypes (photoreceptors (PRs) and bipolar cells). We confirmed that the late RSCs were not restricted over-time and conserved multipotentcy characteristics by generating retinal phenotypes that usually appear at early (RGC) or late (PRs) developmental stages. Our results show that EGF is not only a factor controlling glial development, as previously shown, but also a potent differentiation factor for retinal neurons, at least in vitro. On the other hand, we wanted to find out if the adult human eye contains retina stem cells. The eye of some fishes and amphibians continues to grow during adulthood due to the persistent activity of retinal stem cells (RSCs). In fish, the RSCs are located in the ciliary margin zone (CMZ) at the periphery of the retina. Although, the adult mammalian eye does not grow during adult life, several groups have shown that the adult mouse eye contains retinal stem cells in the homologous zone (i.e. the ciliary margin), in the pigmented epithelium and not in the neuroretina. These RSCs meet some criteria of stem cells. We identified and characterized the human retinal stem cells. We showed that they posses the same features as their rodent counterpart i.e. they self-renew, expand and differentiate into retinal neurons in vitro and in vivo (indicated by immunostaining and microarray analysis). Moreover, they can be greatly expanded while conserving their sternness potential as revealed by the gene expression profile analysis (microarray approach). They also expressed genes common to various stem cells: nucleostemin, nestin, Bmil , Notch2, ABCG2, c-kit and its ligand, as well as cyclin D3 which acts downstream of c-kit. Furthermore, Bmil and Oct-4 were required for RSC proliferation reinforcing their stem cell identity. Our data indicate that the mice postnatal neuroretina and the adult pigmented epithelium of adult human ciliary margin contain retinal stem cells. We developed a system to easily expand and culture RSCs that can be used to investigate the retinogenesis. For example, it can help to screen drugs or factors involved, for instance, in the survival or generation of retinal cells. This could help to dissect genes or factors involved in the restriction or specification of retinal cell fate. In Western countries, retinitis pigmentosa (RP) affects 1 out of 3'500 individuals and age-related macula degeneration (AMD) strikes 1 % to 3% of the population over 60. In vitro generation of retinal cells is thus a promising tool to provide an unlimited cell source for cellular transplantation studies in the retina.