974 resultados para Point estimation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

X-ray computed tomography (CT) is a non-invasive medical imaging technique that generates cross-sectional images by acquiring attenuation-based projection measurements at multiple angles. Since its first introduction in the 1970s, substantial technical improvements have led to the expanding use of CT in clinical examinations. CT has become an indispensable imaging modality for the diagnosis of a wide array of diseases in both pediatric and adult populations [1, 2]. Currently, approximately 272 million CT examinations are performed annually worldwide, with nearly 85 million of these in the United States alone [3]. Although this trend has decelerated in recent years, CT usage is still expected to increase mainly due to advanced technologies such as multi-energy [4], photon counting [5], and cone-beam CT [6].

Despite the significant clinical benefits, concerns have been raised regarding the population-based radiation dose associated with CT examinations [7]. From 1980 to 2006, the effective dose from medical diagnostic procedures rose six-fold, with CT contributing to almost half of the total dose from medical exposure [8]. For each patient, the risk associated with a single CT examination is likely to be minimal. However, the relatively large population-based radiation level has led to enormous efforts among the community to manage and optimize the CT dose.

As promoted by the international campaigns Image Gently and Image Wisely, exposure to CT radiation should be appropriate and safe [9, 10]. It is thus a responsibility to optimize the amount of radiation dose for CT examinations. The key for dose optimization is to determine the minimum amount of radiation dose that achieves the targeted image quality [11]. Based on such principle, dose optimization would significantly benefit from effective metrics to characterize radiation dose and image quality for a CT exam. Moreover, if accurate predictions of the radiation dose and image quality were possible before the initiation of the exam, it would be feasible to personalize it by adjusting the scanning parameters to achieve a desired level of image quality. The purpose of this thesis is to design and validate models to quantify patient-specific radiation dose prospectively and task-based image quality. The dual aim of the study is to implement the theoretical models into clinical practice by developing an organ-based dose monitoring system and an image-based noise addition software for protocol optimization.

More specifically, Chapter 3 aims to develop an organ dose-prediction method for CT examinations of the body under constant tube current condition. The study effectively modeled the anatomical diversity and complexity using a large number of patient models with representative age, size, and gender distribution. The dependence of organ dose coefficients on patient size and scanner models was further evaluated. Distinct from prior work, these studies use the largest number of patient models to date with representative age, weight percentile, and body mass index (BMI) range.

With effective quantification of organ dose under constant tube current condition, Chapter 4 aims to extend the organ dose prediction system to tube current modulated (TCM) CT examinations. The prediction, applied to chest and abdominopelvic exams, was achieved by combining a convolution-based estimation technique that quantifies the radiation field, a TCM scheme that emulates modulation profiles from major CT vendors, and a library of computational phantoms with representative sizes, ages, and genders. The prospective quantification model is validated by comparing the predicted organ dose with the dose estimated based on Monte Carlo simulations with TCM function explicitly modeled.

Chapter 5 aims to implement the organ dose-estimation framework in clinical practice to develop an organ dose-monitoring program based on a commercial software (Dose Watch, GE Healthcare, Waukesha, WI). In the first phase of the study we focused on body CT examinations, and so the patient’s major body landmark information was extracted from the patient scout image in order to match clinical patients against a computational phantom in the library. The organ dose coefficients were estimated based on CT protocol and patient size as reported in Chapter 3. The exam CTDIvol, DLP, and TCM profiles were extracted and used to quantify the radiation field using the convolution technique proposed in Chapter 4.

With effective methods to predict and monitor organ dose, Chapters 6 aims to develop and validate improved measurement techniques for image quality assessment. Chapter 6 outlines the method that was developed to assess and predict quantum noise in clinical body CT images. Compared with previous phantom-based studies, this study accurately assessed the quantum noise in clinical images and further validated the correspondence between phantom-based measurements and the expected clinical image quality as a function of patient size and scanner attributes.

Chapter 7 aims to develop a practical strategy to generate hybrid CT images and assess the impact of dose reduction on diagnostic confidence for the diagnosis of acute pancreatitis. The general strategy is (1) to simulate synthetic CT images at multiple reduced-dose levels from clinical datasets using an image-based noise addition technique; (2) to develop quantitative and observer-based methods to validate the realism of simulated low-dose images; (3) to perform multi-reader observer studies on the low-dose image series to assess the impact of dose reduction on the diagnostic confidence for multiple diagnostic tasks; and (4) to determine the dose operating point for clinical CT examinations based on the minimum diagnostic performance to achieve protocol optimization.

Chapter 8 concludes the thesis with a summary of accomplished work and a discussion about future research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to capture human motion allows researchers to evaluate an individual’s gait. Gait can be measured in different ways, from camera-based systems to Magnetic and Inertial Measurement Units (MIMU). The former uses cameras to track positional information of photo-reflective markers, while the latter uses accelerometers, gyroscopes, and magnetometers to measure segment orientation. Both systems can be used to measure joint kinematics, but the results vary because of their differences in anatomical calibrations. The objective of this thesis was to study potential solutions for reducing joint angle discrepancies between MIMU and camera-based systems. The first study worked to correct the anatomical frame differences between MIMU and camera-based systems via the joint angles of both systems. This study looked at full lower body correction versus correcting a single joint. Single joint correction showed slightly better alignment of both systems, but does not take into account that body segments are generally affected by more than one joint. The second study explores the possibility of anatomical landmarking using a single camera and a pointer apparatus. Results showed anatomical landmark position could be determined using a single camera, as the anatomical landmarks found from this study and a camera-based system showed similar results. This thesis worked on providing a novel way for obtaining anatomical landmarks with a single point-and-shoot camera, as well aligning anatomical frames between MIMUs and camera-based systems using joint angles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Static state estimators currently in use in power systems are prone to masking by multiple bad data. This is mainly because the power system regression model contains many leverage points; typically they have a cluster pattern. As reported recently in the statistical literature, only high breakdown point estimators are robust enough to cope with gross errors corrupting such a model. This paper deals with one such estimator, the least median of squares estimator, developed by Rousseeuw in 1984. The robustness of this method is assessed while applying it to power systems. Resampling methods are developed, and simulation results for IEEE test systems discussed. © 1991 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: To achieve good outcomes in critically ill obstetric patients, it is necessary to identify organ dysfunction rapidly so that life-saving interventions can be appropriately commenced. However, timely access to clinical chemistry results is problematic, even in referral institutions, in the sub-Saharan African region. Reliable point-of-care tests licensed for clinical use are now available for lactate and creatinine. Aim: We aimed to assess whether implementation of point-of-care testing for lactate and creatinine is feasible in the obstetric unit at the Queen Elizabeth Central Hospital (QECH) in Blantyre, Malawi, by obtaining the opinions of clinical staff on the use of these tests in practice. Methods: During a two-month evaluation period nurse-midwives, medical interns, clinical officers, registrars, and consultants were given the opportunity to use StatStrip® and StatSensor® (Nova Biomedical, Waltham, USA) devices, for lactate and creatinine estimation, as part of their routine clinical practice in the obstetric unit. They were subsequently asked to complete a short questionnaire. Results: Thirty-seven questionnaires were returned by participants: 22 from nurse-midwives and the remainder from clinicians. The mean satisfaction score for the devices was 7.6/10 amongst clinicians and 8.0/10 amongst nurse-midwives. The majority of participants stated that the obstetric high dependency unit (HDU) was the most suitable location for the devices. For lactate, 31 participants strongly agreed that testing should be continued and 24 strongly agreed that it would influence patient management. For creatinine, 29 strongly agreed that testing should be continued and 28 strongly agreed that it would influence their patient management. Twenty participants strongly agreed that they trust point-of-care devices. Conclusions: Point-of-care clinical chemistry testing was feasible, practical, and well received by staff, and was considered to have a useful role to play in the clinical care of sick obstetric patients at this referral centre.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Digital rock physics combines modern imaging with advanced numerical simulations to analyze the physical properties of rocks -- In this paper we suggest a special segmentation procedure which is applied to a carbonate rock from Switzerland -- Starting point is a CTscan of a specimen of Hauptmuschelkalk -- The first step applied to the raw image data is a nonlocal mean filter -- We then apply different thresholds to identify pores and solid phases -- Because we are aware of a nonneglectable amount of unresolved microporosity we also define intermediate phases -- Based on this segmentation determine porositydependent values for the pwave velocity and for the permeability -- The porosity measured in the laboratory is then used to compare our numerical data with experimental data -- We observe a good agreement -- Future work includes an analytic validation to the numerical results of the pwave velocity upper bound, employing different filters for the image segmentation and using data with higher resolution

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Obesity ignites numerous health and psychosocial problems and is associated with various comorbidities. Body mass index (BMI) is also independently associated with improved risk for numerous kidney disorders. As renal length is considered a vital parameter in the clinical assessment of renal patients, normal renal length has to be defined in accordance to BMI. Objectives: The aim of this study was to define normal kidney length in obese children, comparing ultrasound measurements of the kidney length in obese and non-obese children and adolescents, in order to reduce unnecessary evaluations for nephromegaly. Patients and Methods: Fifty obese children and adolescents and 50 non-obese children and adolescents, aged 1-19 years, were selected from patients of pediatric clinics in two hospitals (Rasoul-e-Akram and Shahid Fahmideh) in Tehran between June 2010 and 2012. After the nephrologist’s and endocrinologist’s approval, the largest longitudinal renal dimension was measured in deep inspiration position by abdomino-pelvic ultrasonography in both groups. Results: It was revealed that both kidneys in obese group were significantly larger than in control group (P = 0.044 and 0.040, respectively). Obesity status, height and age were proven to be significant and independent predictors of length of both kidneys. In both groups length of left kidney was significantly larger than that of right kidney (P < 0.001). Conclusions: A specific standard cut-point limit or norm gram has to be formulated for obese children and adolescents in order to facilitate the diagnosis of kidney diseases, including organomegaly, in these patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A camera maps 3-dimensional (3D) world space to a 2-dimensional (2D) image space. In the process it loses the depth information, i.e., the distance from the camera focal point to the imaged objects. It is impossible to recover this information from a single image. However, by using two or more images from different viewing angles this information can be recovered, which in turn can be used to obtain the pose (position and orientation) of the camera. Using this pose, a 3D reconstruction of imaged objects in the world can be computed. Numerous algorithms have been proposed and implemented to solve the above problem; these algorithms are commonly called Structure from Motion (SfM). State-of-the-art SfM techniques have been shown to give promising results. However, unlike a Global Positioning System (GPS) or an Inertial Measurement Unit (IMU) which directly give the position and orientation respectively, the camera system estimates it after implementing SfM as mentioned above. This makes the pose obtained from a camera highly sensitive to the images captured and other effects, such as low lighting conditions, poor focus or improper viewing angles. In some applications, for example, an Unmanned Aerial Vehicle (UAV) inspecting a bridge or a robot mapping an environment using Simultaneous Localization and Mapping (SLAM), it is often difficult to capture images with ideal conditions. This report examines the use of SfM methods in such applications and the role of combining multiple sensors, viz., sensor fusion, to achieve more accurate and usable position and reconstruction information. This project investigates the role of sensor fusion in accurately estimating the pose of a camera for the application of 3D reconstruction of a scene. The first set of experiments is conducted in a motion capture room. These results are assumed as ground truth in order to evaluate the strengths and weaknesses of each sensor and to map their coordinate systems. Then a number of scenarios are targeted where SfM fails. The pose estimates obtained from SfM are replaced by those obtained from other sensors and the 3D reconstruction is completed. Quantitative and qualitative comparisons are made between the 3D reconstruction obtained by using only a camera versus that obtained by using the camera along with a LIDAR and/or an IMU. Additionally, the project also works towards the performance issue faced while handling large data sets of high-resolution images by implementing the system on the Superior high performance computing cluster at Michigan Technological University.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pitch Estimation, also known as Fundamental Frequency (F0) estimation, has been a popular research topic for many years, and is still investigated nowadays. The goal of Pitch Estimation is to find the pitch or fundamental frequency of a digital recording of a speech or musical notes. It plays an important role, because it is the key to identify which notes are being played and at what time. Pitch Estimation of real instruments is a very hard task to address. Each instrument has its own physical characteristics, which reflects in different spectral characteristics. Furthermore, the recording conditions can vary from studio to studio and background noises must be considered. This dissertation presents a novel approach to the problem of Pitch Estimation, using Cartesian Genetic Programming (CGP).We take advantage of evolutionary algorithms, in particular CGP, to explore and evolve complex mathematical functions that act as classifiers. These classifiers are used to identify piano notes pitches in an audio signal. To help us with the codification of the problem, we built a highly flexible CGP Toolbox, generic enough to encode different kind of programs. The encoded evolutionary algorithm is the one known as 1 + , and we can choose the value for . The toolbox is very simple to use. Settings such as the mutation probability, number of runs and generations are configurable. The cartesian representation of CGP can take multiple forms and it is able to encode function parameters. It is prepared to handle with different type of fitness functions: minimization of f(x) and maximization of f(x) and has a useful system of callbacks. We trained 61 classifiers corresponding to 61 piano notes. A training set of audio signals was used for each of the classifiers: half were signals with the same pitch as the classifier (true positive signals) and the other half were signals with different pitches (true negative signals). F-measure was used for the fitness function. Signals with the same pitch of the classifier that were correctly identified by the classifier, count as a true positives. Signals with the same pitch of the classifier that were not correctly identified by the classifier, count as a false negatives. Signals with different pitch of the classifier that were not identified by the classifier, count as a true negatives. Signals with different pitch of the classifier that were identified by the classifier, count as a false positives. Our first approach was to evolve classifiers for identifying artifical signals, created by mathematical functions: sine, sawtooth and square waves. Our function set is basically composed by filtering operations on vectors and by arithmetic operations with constants and vectors. All the classifiers correctly identified true positive signals and did not identify true negative signals. We then moved to real audio recordings. For testing the classifiers, we picked different audio signals from the ones used during the training phase. For a first approach, the obtained results were very promising, but could be improved. We have made slight changes to our approach and the number of false positives reduced 33%, compared to the first approach. We then applied the evolved classifiers to polyphonic audio signals, and the results indicate that our approach is a good starting point for addressing the problem of Pitch Estimation.