937 resultados para Piezoelectric flextensional actuators
Resumo:
This study used scanning electron microscopy (SEM) to evaluate the morphology and adhesion of blood components on root surfaces instrumented by curettes, piezoelectric ultrasonic scaler and Er,Cr:YSGG laser. One hundred samples from 25 teeth were divided into 5 groups: 1) Curettes; 2) Piezoelectric ultrasonic scaler; 3) Curettes plus piezoelectric ultrasonic scaler; 4) Er,Cr:YSGG laser; 5) Curettes plus Er,Cr:YSGG laser. Ten samples from each group were used for analysis of root morphology and the other 10 were used for analysis of adhesion of blood components on root surface. The results were analyzed statistically by the Kruskall-Wallis and Mann-Whitney tests with a significance level of 5%. The group treated with curettes showed smoother surfaces when compared to the groups were instrumented with piezoelectric ultrasonic scaler and the Er,Cr:YSGG laser. The surfaces instrumented with piezoelectric ultrasonic scaler and Er,Cr:YSGG laser, alone or in combination with hand scaling and root planing, did not differ significantly (p>0.05) among themselves. No statistically significant differences (p>0.05) among groups were found as to the adhesion of blood components on root surface. Ultrasonic instrumentation and Er,Cr:YSGG irradiation produced rougher root surfaces than the use of curettes, but there were no differences among treatments with respect to the adhesion of blood components.
Resumo:
Structural Health Monitoring (SHM) denotes a system with the ability to detect and interpret adverse changes in a structure. One of the critical challenges for practical implementation of SHM system is the ability to detect damage under changing environmental conditions. This paper aims to characterize the temperature, load and damage effects in the sensor measurements obtained with piezoelectric transducer (PZT) patches. Data sets are collected on thin aluminum specimens under different environmental conditions and artificially induced damage states. The fuzzy clustering algorithm is used to organize the sensor measurements into a set of clusters, which can attribute the variation in sensor data due to temperature, load or any induced damage.
Resumo:
Lead zirconate titanate Pb(Zr 0.50Ti 0.50)O 3 (PZT) thin films were deposited by a polymeric chemical method on Pt(111)/Ti/SiO2/Si substrates to understand the mechanisms of phase transformations and the effect of film thickness on the structure, dielectric and piezoelectric properties in these films. PZT films pyrolyzed at temperatures higher than 350 °C present a coexistence of pyrochlore and perovskite phases, while only perovskite phase grows in films pyrolyzed at temperatures lower than 300 °C. For pyrochlore-free PZT thin films, a small (100) orientation tendency near the film-substrate interface was observed. Finally, we demonstrate the existence of a self-polarization effect in the studied PZT thin films. Results suggest that Schottky barriers and/or mechanical coupling near the filmsubstrate interface are not primarily responsible for the observed self-polarization effect in our films. © 2012 IEEE.
Resumo:
Lead zirconate titanate Pb(Zr0.50Ti0.50)O3 (PZT) thin films were deposited by a polymeric chemical method on Pt(111)/Ti/SiO2/Si substrates to understand the mechanisms of phase transformations and the effect of film thickness on the structure, dielectric, and piezoelectric properties in these films. PZT films pyrolyzed at temperatures higher than 350 °C present a coexistence of pyrochlore and perovskite phases, while only perovskite phase grows in films pyrolyzed at temperatures lower than 300 °C. For pyrochlore-free PZT thin films, a small (100)-orientation tendency near the film-substrate interface was observed. Finally, we demonstrate the existence of a self-polarization effect in the studied PZT thin films. The increase of self-polarization with the film thickness increasing from 200 nm to 710 nm suggests that Schottky barriers and/or mechanical coupling near the film-substrate interface are not primarily responsible for the observed self-polarization effect in our films. © 2013 AIP Publishing LLC.
Resumo:
Lead-free solid solutions (1-x)Bi0.5Na0.5TiO 3 (BNT)-xBaZr0.25Ti0.75O3 (BZT) (x=0, 0.01, 0.03, 0.05, and 0.07) were prepared by the solid state reaction method. X-ray diffraction (XRD) and Rietveld refinement analyses of 1-x(BNT)-x(BZT) solid solution ceramic were employed to study the structure of these systems. A morphotropic phase boundary (MPB) between rhombohedral and cubic structures occured at the composition x=0.05. Raman spectroscopy exhibited a splitting of the (TO3) mode at x=0.05 and confirmed the presence of MPB region. Scanning electron microcopy (SEM) images showed a change in the grain shape with the increase of BZT into the BNT matrix lattice. The temperature dependent dielectric study showed a gradual increase in dielectric constant up to x=0.05 and then decrease with further increase in BZT content. Maximum coercive field, remanent polarization and high piezoelectric constant were observed at x=0.05. Both the structural and electrical properties show that the solid solution has an MPB around x=0.05. © 2012 Elsevier Ltd and Techna Group S.r.l.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Structural health monitoring (SHM) refers to the procedure of assessing the structure conditions continuously so it is an alternative to conventional nondestructive evaluation (NDE) techniques [1]. With the growing developments in sensor technology acoustic emission (AE) technology has been attracting attention in SHM applications. AE are characterized by waves produced by the sudden internal stress redistribution caused by the changes in the internal structure, such as fatigue, crack growth, corrosion, etc. Piezoelectric materials such as Lead Zirconate Titanate (PZT) ceramic have been widely used as sensor due to its high electromechanical coupling factor and piezoelectric d coefficients. Because of the poor mechanical characteristic and the lack in the formability of the ceramic, polymer matrix-based piezoelectric composites have been studied in the last decade in order to obtain better properties in comparison with a single phase material. In this study a composite film made of polyurethane (PU) and PZT ceramic particles partially recovered with polyaniline (PAni) was characterized and used as sensor for AE detection. Preliminary results indicate that the presence of a semiconductor polymer (PAni) recovering the ceramic particles, make the poling process easier and less time consuming. Also, it is possible to observe that there is a great potential to use such type of composite as sensor for structure health monitoring.