985 resultados para Phycocyanin-alpha subunit


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We used a bacterially expressed fusion protein containing the entire cytoplasmic domain of the human leukemia inhibitory factor (LIF) receptor to study its phosphorylation in response to LIF stimulation. The dose- and time-dependent relationships for phosphorylation of this construct in extracts of LIF-stimulated 3T3-L1 cells were superimposable with those for the stimulation of mitogen-activated protein kinase (MAPK). Indeed, phosphorylation of the cytoplasmic domain of the low-affinity LIF receptor alpha-subunit (LIFR) in Mono Q-fractionated, LIF-stimulated 3T3-L1 extracts occurred only in those fractions containing activated MAPK; Ser-1044 served as the major phosphorylation site in the human LIFR for MAPK both in agonist-stimulated 3T3-L1 lysates and by recombinant extracellular signal-regulated kinase 2 in vitro. Expression in rat H-35 hepatoma cells of LIFR or chimeric granulocyte-colony-stimulating factor receptor (G-CSFR)-LIFR mutants lacking Ser-1044 failed to affect cytokine-stimulated expression of a reporter gene under the control of the beta-fibrinogen gene promoter but eliminated the insulin-induced attenuation of cytokine-stimulated gene expression. Thus, our results identify the human LIFR as a substrate for MAPK and suggest a mechanism of heterologous receptor regulation of LIFR signaling occurring at Ser-1044.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Calcium, a universal second messenger, regulates diverse cellular processes in eukaryotes. Ca2+ and Ca2+/calmodulin-regulated protein phosphorylation play a pivotal role in amplifying and diversifying the action of Ca(2+)-binding domain was cloned and characterized from lily. The cDNA clone contains an open reading frame coding for a protein of 520 amino acids. The predicted structure of CCaMK contains a catalytic domain followed by two regulatory domains, a calmodulin-binding domain and a visinin-like Ca(2+)-binding domain. The amino-terminal region of CCaMK contains all 11 conserved subdomains characteristic of serine/threonine protein kinases. The calmodulin-binding region of CCaMK has high homology (79%) to alpha subunit of mammalian Ca2+/calmodulin-dependent protein kinase. The calmodulin-binding region is fused to a neural visinin-like domain that contains three Ca(2+)-binding EF-hand motifs and a biotin-binding site. The Escherichia coli-expressed protein (approximately 56 kDa) binds calmodulin in a Ca(2+)-dependent manner. Furthermore, 45Ca-binding assays revealed that CCaMK directly binds Ca2+. The CCaMK gene is preferentially expressed in developing anthers. Southern blot analysis revealed that CCaMK is encoded by a single gene. The structural features of the gene suggest that it has multiple regulatory controls and could play a unique role in Ca2+ signaling in plants.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a simple, rapid procedure for reconstitution of Escherichia coli RNA polymerase holoenzyme (RNAP) from individual recombinant alpha, beta, beta', and sigma 70 subunits. Hexahistidine-tagged recombinant alpha subunit purified by batch-mode metal-ion-affinity chromatography is incubated with crude recombinant beta, beta', and sigma 70 subunits from inclusion bodies, and the resulting reconstituted recombinant RNAP is purified by batch-mode metal-ion-affinity chromatography. RNAP prepared by this procedure is indistinguishable from RNAP prepared by conventional methods with respect to subunit stoichiometry, alpha-DNA interaction, catabolite gene activator protein (CAP)-independent transcription, and CAP-dependent transcription. Experiments with alpha (1-235), an alpha subunit C-terminal deletion mutant, establish that the procedure is suitable for biochemical screening of subunit lethal mutants.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A detailed structure-function analysis of human interleukin 5 (hIL5) has been performed. The hIL5 receptor is composed of two different polypeptide chains, the alpha and beta subunits. The alpha subunit alone is sufficient for ligand binding, but association with the beta subunit leads to a 2- to 3-fold increase in binding affinity. The beta chain is shared with the receptors for IL3 and granulocyte/macrophage-colony-stimulating factor--hence the descriptor beta C (C for common). All hIL5 mutants were analyzed in a solid-phase binding assay for hIL5R alpha interaction and in a proliferation assay using IL5-dependent cell lines for receptor-complex activation. Most residues affecting binding to the receptor alpha subunit were clustered in a loop connecting beta-strand 1 and helix B (mutants H38A, K39A, and H41A), in beta-strand 2 (E89A and R91A; weaker effect for E90A) and close to the C terminus (T109A, E110A, W111S, and I112A). Mutations at one position, E13 (Glu13), caused a reduced activation of the hIL5 receptor complex. In the case of E13Q, only 0.05% bioactivity was detected on a hIL5-responsive subclone of the mouse promyelocytic cell line FDC-P1. Moreover, on hIL5-responsive TF1 cells, the same mutant was completely inactive and proved to have antagonistic properties. Interactions of this mutant with both receptor subunits were nevertheless indistinguishable from those of nonmutated hIL5 by crosslinking and Scatchard plot analysis of transfected COS-1 cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Holocarboxylase synthetase (HCS) catalyzes the biotinylation of the four biotin-dependent carboxylases in human cells. Patients with HCS deficiency lack activity of all four carboxylases, indicating that a single HCS is targeted to the mitochondria and cytoplasm. We isolated 21 human HCS cDNA clones, in four size classes of 2.0-4.0 kb, by complementation of an Escherichia coli birA mutant defective in biotin ligase. Expression of the cDNA clones promoted biotinylation of the bacterial biotinyl carboxyl carrier protein as well as a carboxyl-terminal fragment of the alpha subunit of human propionyl-CoA carboxylase expressed from a plasmid. The open reading frame encodes a predicted protein of 726 aa and M(r) 80,759. Northern blot analysis revealed the presence of a 5.8-kb major species and 4.0-, 4.5-, and 8.5-kb minor species of poly(A)+ RNA in human tissues. Human HCS shows specific regions of homology with the BirA protein of E. coli and the presumptive biotin ligase of Paracoccus denitrificans. Several forms of HCS mRNA are generated by alternative splicing, and as a result, two mRNA molecules bear different putative translation initiation sites. A sequence upstream of the first translation initiation site encodes a peptide structurally similar to mitochondrial presequences, but it lacks an in-frame ATG codon to direct its translation. We anticipate that alternative splicing most likely mediates the mitochondrial versus cytoplasmic expression, although the elements required for directing the enzyme to the mitochondria remain to be confirmed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A systematic evaluation of structure-activity information led to the construction of genetically engineered interleukin 3 (IL-3) receptor agonists (synthokines) with enhanced hematopoietic potency. SC-55494, the most extensively characterized member of this series, exhibits 10- to 20-fold greater biological activity than recombinant human IL-3 (rhIL-3) in human hematopoietic cell proliferation and marrow colony-forming-unit assays. In contrast, SC-55494 is only twice as active as rhIL-3 in priming the synthesis of inflammatory mediators such as leukotriene C4 and triggering the release of histamine from peripheral blood leukocytes. The enhanced hematopoietic activity of SC-55494 correlates with a 60-fold increase in IL-3 alpha-subunit binding affinity and a 20-fold greater affinity for binding to alpha/beta receptor complexes on intact cells relative to rhIL-3. SC-55494 demonstrates a 5- to 10-fold enhanced hematopoietic response relative to its ability to activate the priming and release of inflammatory mediators. Therefore, SC-55494 may ameliorate the myeloablation of cancer therapeutic regimens while minimizing dose-limiting inflammatory side effects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Retinoblastoma cells in culture have previously been shown to express cone-specific genes but not their rod counterparts. We have detected the messages for the rod alpha, beta, and gamma subunits of cGMP phosphodiesterase (PDE), the rod alpha subunit of transducin, rod opsin, and the cone alpha' subunit of PDE in RNA of human Y-79 retinoblastoma cells by reverse transcription-PCR. Quantitative analysis of the mRNAs for the rod alpha and cone alpha' PDE subunits revealed that they were expressed at comparable levels; however, the transcript encoding the rod beta PDE subunit was 10 times more abundant in these cells. Northern hybridization analysis of Y-79 cell RNA confirmed the presence of the transcripts for rod and cone PDE catalytic subunits. To test whether the transcriptional machinery required for the expression of rod-specific genes was endogenous in Y-79 retinoblastoma cells, cultures were transfected with a construct containing the promoter region of the rod beta PDE subunit gene attached to the firefly luciferase reporter vector. Significant levels of reporter enzyme activity were observed in the cell lysates. Our results demonstrate that the Y-79 retinoblastoma cell line is a good model system for the study of transcriptional regulation of rod-specific genes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Foxp3(+)CD25(+)CD4(+) regulatory T cells are vital for peripheral tolerance and control of tissue inflammation. In this study, we characterized the phenotype and monitored the migration and activity of regulatory T cells present in the airways of allergic or tolerant mice after allergen challenge. To induce lung allergic inflammation, mice were sensitized twice with ovalbumin/aluminum hydroxide gel and challenged twice with intranasal ovalbumin. Tolerance was induced by oral administration of ovalbumin for 5 consecutive days prior to OVA sensitization and challenge. We detected regulatory T cells (Foxp3(+)CD25(+)CD4(+) T cells) in the airways of allergic and tolerant mice; however, the number of regulatory T cells was more than 40-fold higher in allergic mice than in tolerant mice. Lung regulatory T cells expressed an effector/memory phenotype (CCR4(high)CD62L(low)CD44(high)CD54(high)CD69(+)) that distinguished them from naive regulatory T cells (CCR4(int)CD62L(high)CD44(int)CD54(int)CD69(-)). These regulatory T cells efficiently suppressed pulmonary T-cell proliferation but not Th2 cytokine production.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In human systemic lupus erythematosus (SLE), diverse autoantibodies accumulate over years before disease manifestation. Unaffected relatives of SLE patients frequently share a sustained production of autoantibodies with indiscriminable specificity, usually without ever acquiring the disease. We studied relations of IgG autoantibody profiles and peripheral blood activated regulatory T-cells (aTregs), represented by CD4(+)CD25(bright) T-cells that were regularly 70-90% Foxp3(+). We found consistent positive correlations of broad-range as well as specific SLE-associated IgG with aTreg frequencies within unaffected relatives, but not patients or unrelated controls. Our interpretation: unaffected relatives with shared genetic factors compensated pathogenic effects by aTregs engaged in parallel with the individual autoantibody production. To study this further, we applied a novel analytic approach named coreferentiality that tests the indirect relatedness of parameters in respect to multivariate phenotype data. Results show that independently of their direct correlation, aTreg frequencies and specific SLE-associated IgG were likely functionally related in unaffected relatives: they significantly parallelled each other in their relations to broad-range immunoblot autoantibody profiles. In unaffected relatives, we also found coreferential effects of genetic variation in the loci encoding IL-2 and CD25. A model of CD25 functional genetic effects constructed by coreferentiality maximization suggests that IL-2-CD25 interaction, likely stimulating aTregs in unaffected relatives, had an opposed effect in SLE patients, presumably triggering primarily T-effector cells in this group. Coreferentiality modeling as we do it here could also be useful in other contexts, particularly to explore combined functional genetic effects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Intravenous IgG (ivIg) is a therapeutic alternative for lupus erythematosus, the mechanism of which remains to be fully understood. Here we investigated whether ivIg affects two established sub-phenotypes of SLE, namely relative oligoclonality of circulating T-cells and reduced activity of CD4 + Foxp3+ regulatory T-cells (Tregs) reflected by lower CD25 surface density.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tertiapin, a short peptide from honey bee venom, has been reported to specifically block the inwardly rectifying K+ (Kir) channels, including G protein-coupled inwardly rectifying potassium channel (GIRK) 1 + GIRK4 heteromultimers and ROMK1 homomultimers. In the present study, the effects of a stable and functionally similar derivative of tertiapin, tertiapin-Q, were examined on recombinant human voltage-dependent Ca2+-activated large conductance K+ channel (BK or MaxiK; alpha-subunit or hSlo1 homomultimers) and mouse inwardly rectifying GIRK1 + GIRK2 (i.e., Kir3.1 and Kir3.2) heteromultimeric K+ channels expressed in Xenopus oocytes and in cultured newborn mouse dorsal root ganglion (DRG) neurons. In two-electrode voltage-clamped oocytes, tertiapin-Q (1-100 nM) inhibited BK-type K+ channels in a use- and concentration-dependent manner. We also confirmed the inhibition of recombinant GIRK1 + GIRK2 heteromultimers by tertiapin-Q, which had no effect on endogenous depolarization- and hyperpolarization-activated currents sensitive to extracellular divalent cations (Ca2+, Mg2+, Zn2+, and Ba2+) in defolliculated oocytes. In voltage-clamped DRG neurons, tertiapin-Q voltage- and use-dependently inhibited outwardly rectifying K+ currents, but Cs+-blocked hyperpolarization-activated inward currents including I-H were insensitive to tertiapin-Q, baclofen, barium, and zinc, suggesting absence of functional GIRK channels in the newborn. Under current-clamp conditions, tertiapin-Q blocked the action potential after hyperpolarization (AHP) and increased action potential duration in DRG neurons. Taken together, these results demonstrate that the blocking actions of tertiapin-Q are not specific to Kir channels and that the blockade of recombinant BK channels and native neuronal AHP currents is use-dependent. Inhibition of specific types of Kir and voltage-dependent Ca2+-activated K+ channels by tertiapin-Q at nanomolar range via different mechanisms may have implications in pain physiology and therapy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The external loop linking the M2 and M3 transmembrane domains is crucial for coupling agonist binding to channel gating in the glycine receptor chloride channel (GlyR). A substituted cysteine accessibility scan previously showed that glycine activation increased the surface accessibility of 6 contiguous residues (Arg(271) Lys(276)) toward the N-terminal end of the homomeric alpha 1 GlyR M2 - M3 loop. In the present study we used a similar approach to determine whether the allosteric antagonist, picrotoxin, could impose conformational changes to this domain that cannot be induced by varying agonist concentrations alone. Picrotoxin slowed the reaction rate of a sulfhydryl-containing compound ( MTSET) with A272C, S273C, and L274C. Before interpreting this as a picrotoxin-specific conformational change, it was necessary to eliminate the possibility of steric competition between picrotoxin and MTSET. Accordingly, we showed that picrotoxin and the structurally unrelated blocker, bilobalide, were both trapped in the R271C GlyR in the closed state and that a point mutation to the pore-lining Thr(6') residue abolished inhibition by both compounds. We also demonstrated that the picrotoxin dissociation rate was linearly related to the channel open probability. These observations constitute a strong case for picrotoxin binding in the pore. We thus conclude that the picrotoxin-specific effects on the M2 - M3 loop are mediated allosterically. This suggests that the M2 - M3 loop responds differently to the occupation of different binding sites.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Heterotrimeric G proteinshave been previously linked to plant defense; however a role for the G beta gamma dimer in defense signaling has not been described to date. Using available Arabidopsis (Arabidopsis thaliana) mutants lacking functional G alpha or G beta subunits, we show that defense against the necrotrophic pathogens Alternaria brassicicola and Fusarium oxysporum is impaired in G beta- deficient mutants while G alpha-deficient mutants show slightly increased resistance compared to wild-type Columbia ecotype plants. In contrast, responses to virulent (DC3000) and avirulent (JL1065) strains of Pseudomonas syringae appear to be independent of heterotrimeric G proteins. The induction of a number of defense-related genes in G beta-deficient mutants were severely reduced in response to A. brassicicola infection. In addition, G beta-deficient mutants exhibit decreased sensitivity to a number of methyl jasmonate- induced responses such as induction of the plant defensin gene PDF1.2, inhibition of root elongation, seed germination, and growth of plants in sublethal concentrations of methyl jasmonate. In all cases, the behavior of the G alpha- deficient mutants is coherent with the classic heterotrimeric mechanism of action, indicating that jasmonic acid signaling is influenced by the Gbg functional subunit but not by G alpha. We hypothesize that G beta gamma acts as a direct or indirect enhancer of the jasmonate signaling pathway in plants.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Voltage-gated sodium channels (VGSCs) play an important role in neuronal excitability. Regulation of VGSC activity is a complex phenomenon that occurs at multiple levels in the cell, including transcriptional regulation, post-translational modification and membrane insertion and retrieval. Multiple VGSC subtypes exist that vary in their biophysical and pharmacological properties and tissue distribution. Any alteration of the VGSC subtype profile of a neuron or the mechanisms that regulate VGSC activity can cause significant changes in neuronal excitability. Inflammatory and neuropathic pain states are characterised by alterations in VGSC subtype composition and activity in sensory neurons. This review focuses on the VGSC subtypes involved in such pain states. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

beta-Hydroxy-beta-methylbutyrate (HMB; 50 microM) has been shown to attenuate the depression in protein synthesis in murine myotubes in response to lipopolysaccharide (LPS), tumor necrosis factor-alpha (TNF-alpha) with or without interferon-gamma (IFN-gamma), and angiotensin II (ANG II). The mechanism for the depression of protein synthesis by all three agents was the same and was attributed to activation of double-stranded RNA-dependent protein kinase (PKR) with the subsequent phosphorylation of eukaryotic initiation factor 2 (eIF2) on the alpha-subunit as well as increased phosphorylation of the elongation factor (eEF2). Myotubes expressing a catalytically inactive PKR variant, PKRDelta6, showed no depression of protein synthesis in response to either LPS or TNF-alpha, confirming the importance of PKR in this process. There was no effect of any of the agents on phosphorylation of mammalian target of rapamycin (mTOR) or initiation factor 4E-binding protein (4E-BP1), and thus no change in the amount of eIF4E bound to 4E-BP1 or the concentration of the active eIF4E.eIF4G complex. HMB attenuated phosphorylation of eEF2, possibly by increasing phosphorylation of mTOR, and also attenuated phosphorylation of eIF2alpha by preventing activation of PKR. These results suggest that HMB may be effective in attenuating muscle atrophy in a range of catabolic conditions.