996 resultados para Percolation flow problems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Finite element techniques for solving the problem of fluid-structure interaction of an elastic solid material in a laminar incompressible viscous flow are described. The mathematical problem consists of the Navier-Stokes equations in the Arbitrary Lagrangian-Eulerian formulation coupled with a non-linear structure model, considering the problem as one continuum. The coupling between the structure and the fluid is enforced inside a monolithic framework which computes simultaneously for the fluid and the structure unknowns within a unique solver. We used the well-known Crouzeix-Raviart finite element pair for discretization in space and the method of lines for discretization in time. A stability result using the Backward-Euler time-stepping scheme for both fluid and solid part and the finite element method for the space discretization has been proved. The resulting linear system has been solved by multilevel domain decomposition techniques. Our strategy is to solve several local subproblems over subdomain patches using the Schur-complement or GMRES smoother within a multigrid iterative solver. For validation and evaluation of the accuracy of the proposed methodology, we present corresponding results for a set of two FSI benchmark configurations which describe the self-induced elastic deformation of a beam attached to a cylinder in a laminar channel flow, allowing stationary as well as periodically oscillating deformations, and for a benchmark proposed by COMSOL multiphysics where a narrow vertical structure attached to the bottom wall of a channel bends under the force due to both viscous drag and pressure. Then, as an example of fluid-structure interaction in biomedical problems, we considered the academic numerical test which consists in simulating the pressure wave propagation through a straight compliant vessel. All the tests show the applicability and the numerical efficiency of our approach to both two-dimensional and three-dimensional problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Decomposition based approaches are recalled from primal and dual point of view. The possibility of building partially disaggregated reduced master problems is investigated. This extends the idea of aggregated-versus-disaggregated formulation to a gradual choice of alternative level of aggregation. Partial aggregation is applied to the linear multicommodity minimum cost flow problem. The possibility of having only partially aggregated bundles opens a wide range of alternatives with different trade-offs between the number of iterations and the required computation for solving it. This trade-off is explored for several sets of instances and the results are compared with the ones obtained by directly solving the natural node-arc formulation. An iterative solution process to the route assignment problem is proposed, based on the well-known Frank Wolfe algorithm. In order to provide a first feasible solution to the Frank Wolfe algorithm, a linear multicommodity min-cost flow problem is solved to optimality by using the decomposition techniques mentioned above. Solutions of this problem are useful for network orientation and design, especially in relation with public transportation systems as the Personal Rapid Transit. A single-commodity robust network design problem is addressed. In this, an undirected graph with edge costs is given together with a discrete set of balance matrices, representing different supply/demand scenarios. The goal is to determine the minimum cost installation of capacities on the edges such that the flow exchange is feasible for every scenario. A set of new instances that are computationally hard for the natural flow formulation are solved by means of a new heuristic algorithm. Finally, an efficient decomposition-based heuristic approach for a large scale stochastic unit commitment problem is presented. The addressed real-world stochastic problem employs at its core a deterministic unit commitment planning model developed by the California Independent System Operator (ISO).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our goal in this thesis is to provide a result of existence of the degenerate non-linear, non-divergence PDE which describes the mean curvature flow in the Lie group SE(2) equipped with a sub-Riemannian metric. The research is motivated by problems of visual completion and models of the visual cortex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Das Basisproblem von Arc-Routing Problemen mit mehreren Fahrzeugen ist das Capacitated Arc-Routing Problem (CARP). Praktische Anwendungen des CARP sind z.B. in den Bereichen Müllabfuhr und Briefzustellung zu finden. Das Ziel ist es, einen kostenminimalen Tourenplan zu berechnen, bei dem alle erforderlichen Kanten bedient werden und gleichzeitig die Fahrzeugkapazität eingehalten wird. In der vorliegenden Arbeit wird ein Cut-First Branch-and-Price Second Verfahren entwickelt. In der ersten Phase werden Schnittebenen generiert, die dem Master Problem in der zweiten Phase hinzugefügt werden. Das Subproblem ist ein kürzeste Wege Problem mit Ressourcen und wird gelöst um neue Spalten für das Master Problem zu liefern. Ganzzahlige CARP Lösungen werden durch ein neues hierarchisches Branching-Schema garantiert. Umfassende Rechenstudien zeigen die Effektivität dieses Algorithmus. Kombinierte Standort- und Arc-Routing Probleme ermöglichen eine realistischere Modellierung von Zustellvarianten bei der Briefzustellung. In dieser Arbeit werden jeweils zwei mathematische Modelle für Park and Loop und Park and Loop with Curbline vorgestellt. Die Modelle für das jeweilige Problem unterscheiden sich darin, wie zulässige Transfer Routen modelliert werden. Während der erste Modelltyp Subtour-Eliminationsbedingungen verwendet, werden bei dem zweiten Modelltyp Flussvariablen und Flusserhaltungsbedingungen eingesetzt. Die Rechenstudie zeigt, dass ein MIP-Solver den zweiten Modelltyp oft in kürzerer Rechenzeit lösen kann oder bei Erreichen des Zeitlimits bessere Zielfunktionswerte liefert.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One observed vibration mode for Tainter gate skinplates involves the bending of the skinplate about a horizontal nodal line. This vibration mode can be approximated as a streamwise rotational vibration about the horizontal nodal line. Such a streamwise rotational vibration of a Tainter gate skinplate must push away water from the portion of the skinplate rotating into the reservoir and draw water toward the gate over that portion of the skinplate receding from the reservoir. The induced pressure is termed the push-and-draw pressure. In the present paper, this push-and-draw pressure is analyzed using the potential theory developed for dissipative wave radiation problems. In the initial analysis, the usual circular-arc skinplate is replaced by a vertical, flat, rigid weir plate so that theoretical calculations can be undertaken. The theoretical push-and-draw pressure is used in the derivation of the non-dimensional equation of motion of the flow-induced rotational vibrations. Non-dimensionalization of the equation of motion permits the identification of the dimensionless equivalent added mass and the wave radiation damping coefficients. Free vibration tests of a vertical, flat, rigid weir plate model, both in air and in water, were performed to measure the equivalent added mass and the wave radiation damping coefficients. Experimental results compared favorably with the theoretical predictions, thus validating the theoretical analysis of the equivalent added mass and wave radiation damping coefficients as a prediction tool for flow-induced vibrations. Subsequently, the equation of motion of an inclined circular-arc skinplate was developed by incorporating a pressure correction coefficient, which permits empirical adaptation of the results from the hydrodynamic pressure analysis of the vertical, flat, rigid weir plate. Results from in-water free vibration tests on a 1/31-scale skinplate model of the Folsom Dam Tainter gate are used to demonstrate the utility of the equivalent added mass coefficient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The preferred initial treatment for patients with stable coronary artery disease is the best available medical therapy. We hypothesized that in patients with functionally significant stenoses, as determined by measurement of fractional flow reserve (FFR), percutaneous coronary intervention (PCI) plus the best available medical therapy would be superior to the best available medical therapy alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The recent development of semi-automated techniques for staining and analyzing flow cytometry samples has presented new challenges. Quality control and quality assessment are critical when developing new high throughput technologies and their associated information services. Our experience suggests that significant bottlenecks remain in the development of high throughput flow cytometry methods for data analysis and display. Especially, data quality control and quality assessment are crucial steps in processing and analyzing high throughput flow cytometry data. Methods: We propose a variety of graphical exploratory data analytic tools for exploring ungated flow cytometry data. We have implemented a number of specialized functions and methods in the Bioconductor package rflowcyt. We demonstrate the use of these approaches by investigating two independent sets of high throughput flow cytometry data. Results: We found that graphical representations can reveal substantial non-biological differences in samples. Empirical Cumulative Distribution Function and summary scatterplots were especially useful in the rapid identification of problems not identified by manual review. Conclusions: Graphical exploratory data analytic tools are quick and useful means of assessing data quality. We propose that the described visualizations should be used as quality assessment tools and where possible, be used for quality control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three-dimensional flow visualization plays an essential role in many areas of science and engineering, such as aero- and hydro-dynamical systems which dominate various physical and natural phenomena. For popular methods such as the streamline visualization to be effective, they should capture the underlying flow features while facilitating user observation and understanding of the flow field in a clear manner. My research mainly focuses on the analysis and visualization of flow fields using various techniques, e.g. information-theoretic techniques and graph-based representations. Since the streamline visualization is a popular technique in flow field visualization, how to select good streamlines to capture flow patterns and how to pick good viewpoints to observe flow fields become critical. We treat streamline selection and viewpoint selection as symmetric problems and solve them simultaneously using the dual information channel [81]. To the best of my knowledge, this is the first attempt in flow visualization to combine these two selection problems in a unified approach. This work selects streamline in a view-independent manner and the selected streamlines will not change for all viewpoints. My another work [56] uses an information-theoretic approach to evaluate the importance of each streamline under various sample viewpoints and presents a solution for view-dependent streamline selection that guarantees coherent streamline update when the view changes gradually. When projecting 3D streamlines to 2D images for viewing, occlusion and clutter become inevitable. To address this challenge, we design FlowGraph [57, 58], a novel compound graph representation that organizes field line clusters and spatiotemporal regions hierarchically for occlusion-free and controllable visual exploration. We enable observation and exploration of the relationships among field line clusters, spatiotemporal regions and their interconnection in the transformed space. Most viewpoint selection methods only consider the external viewpoints outside of the flow field. This will not convey a clear observation when the flow field is clutter on the boundary side. Therefore, we propose a new way to explore flow fields by selecting several internal viewpoints around the flow features inside of the flow field and then generating a B-Spline curve path traversing these viewpoints to provide users with closeup views of the flow field for detailed observation of hidden or occluded internal flow features [54]. This work is also extended to deal with unsteady flow fields. Besides flow field visualization, some other topics relevant to visualization also attract my attention. In iGraph [31], we leverage a distributed system along with a tiled display wall to provide users with high-resolution visual analytics of big image and text collections in real time. Developing pedagogical visualization tools forms my other research focus. Since most cryptography algorithms use sophisticated mathematics, it is difficult for beginners to understand both what the algorithm does and how the algorithm does that. Therefore, we develop a set of visualization tools to provide users with an intuitive way to learn and understand these algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND The Fractional Flow Reserve Versus Angiography for Multivessel Evaluation (FAME) 2 trial demonstrated a significant reduction in subsequent coronary revascularization among patients with stable angina and at least 1 coronary lesion with a fractional flow reserve ≤0.80 who were randomized to percutaneous coronary intervention (PCI) compared with best medical therapy. The economic and quality-of-life implications of PCI in the setting of an abnormal fractional flow reserve are unknown. METHODS AND RESULTS We calculated the cost of the index hospitalization based on initial resource use and follow-up costs based on Medicare reimbursements. We assessed patient utility using the EQ-5D health survey with US weights at baseline and 1 month and projected quality-adjusted life-years assuming a linear decline over 3 years in the 1-month utility improvements. We calculated the incremental cost-effectiveness ratio based on cumulative costs over 12 months. Initial costs were significantly higher for PCI in the setting of an abnormal fractional flow reserve than with medical therapy ($9927 versus $3900, P<0.001), but the $6027 difference narrowed over 1-year follow-up to $2883 (P<0.001), mostly because of the cost of subsequent revascularization procedures. Patient utility was improved more at 1 month with PCI than with medical therapy (0.054 versus 0.001 units, P<0.001). The incremental cost-effectiveness ratio of PCI was $36 000 per quality-adjusted life-year, which was robust in bootstrap replications and in sensitivity analyses. CONCLUSIONS PCI of coronary lesions with reduced fractional flow reserve improves outcomes and appears economically attractive compared with best medical therapy among patients with stable angina.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider percolation properties of the Boolean model generated by a Gibbs point process and balls with deterministic radius. We show that for a large class of Gibbs point processes there exists a critical activity, such that percolation occurs a.s. above criticality. For locally stable Gibbs point processes we show a converse result, i.e. they do not percolate a.s. at low activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS Our aim was to evaluate the invasive haemodynamic indices of high-risk symptomatic patients presenting with 'paradoxical' low-flow, low-gradient, severe aortic stenosis (AS) (PLF-LG) and low-flow, low-gradient severe AS (LEF-LG) and to compare clinical outcomes following transcatheter aortic valve implantation (TAVI) among these challenging AS subgroups. METHODS AND RESULTS Of 534 symptomatic patients undergoing TAVI, 385 had a full pre-procedural right and left heart catheterization. A total of 208 patients had high-gradient severe AS [HGAS; mean gradient (MG) ≥40 mmHg], 85 had PLF-LG [MG ≤ 40 mmHg, indexed aortic valve area [iAVA] ≤0.6 cm(2) m(-2), stroke volume index ≤35 mL/m(2), ejection fraction (EF) ≥50%], and 61 had LEF-LG (MG ≤ 40 mmHg, iAVA ≤0.6 cm(2) m(-2), EF ≤40%). Compared with HGAS, PLF-LG and LEF-LG had higher systemic vascular resistances (HGAS: 1912 ± 654 vs. PLF-LG 2006 ± 586 vs. LEF-LG 2216 ± 765 dyne s m(-5), P = 0.007) but lower valvulo-arterial impedances (HGAS: 7.8 ± 2.7 vs. PLF-LG 6.9 ± 1.9 vs. LEF-LG 7.7 ± 2.5 mmHg mL(-1) m(-2), P = 0.027). At 30 days, no differences in cardiac death (6.5 vs. 4.9 vs. 6.6%, P = 0.90) or death (8.4 vs. 6.1 vs. 6.6%, P = 0.88) were observed among HGAS, PLF-LG, and LEF-LG groups, respectively. At 1 year, New York Heart Association functional improvement occurred in most surviving patients (HGAS: 69.2% vs. PLF-LG 71.7% vs. LEF-LG 89.3%, P = 0.09) and no significant differences in overall mortality were observed (17.6 vs. 20.5 vs. 24.5%, P = 0.67). Compared with HGAS, LEF-LG had a higher 1 year cardiac mortality (adjusted hazard ratio 2.45, 95% confidence interval 1.04-5.75, P = 0.04). CONCLUSION TAVI in PLF-LG or LEF-LG patients is associated with overall mortality rates comparable with HGAS patients and all groups profit symptomatically to a similar extent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ore-forming and geoenviromental systems commonly involve coupled fluid flowand chemical reaction processes. The advanced numerical methods and computational modeling have become indispensable tools for simulating such processes in recent years. This enables many hitherto unsolvable geoscience problems to be addressed using numerical methods and computational modeling approaches. For example, computational modeling has been successfully used to solve ore-forming and mine site contamination/remediation problems, in which fluid flow and geochemical processes play important roles in the controlling dynamic mechanisms. The main purpose of this paper is to present a generalized overview of: (1) the various classes and models associated with fluid flow/chemically reacting systems in order to highlight possible opportunities and developments for the future; (2) some more general issues that need attention in the development of computational models and codes for simulating ore-forming and geoenviromental systems; (3) the related progresses achieved on the geochemical modeling over the past 50 years or so; (4) the general methodology for modeling of oreforming and geoenvironmental systems; and (5) the future development directions associated with modeling of ore-forming and geoenviromental systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background We hypothesized that in patients with stable coronary artery disease and stenosis, percutaneous coronary intervention (PCI) performed on the basis of the fractional flow reserve (FFR) would be superior to medical therapy. Methods In 1220 patients with stable coronary artery disease, we assessed the FFR in all stenoses that were visible on angiography. Patients who had at least one stenosis with an FFR of 0.80 or less were randomly assigned to undergo FFR-guided PCI plus medical therapy or to receive medical therapy alone. Patients in whom all stenoses had an FFR of more than 0.80 received medical therapy alone and were included in a registry. The primary end point was a composite of death from any cause, nonfatal myocardial infarction, or urgent revascularization within 2 years. Results The rate of the primary end point was significantly lower in the PCI group than in the medical-therapy group (8.1% vs. 19.5%; hazard ratio, 0.39; 95% confidence interval [CI], 0.26 to 0.57; P<0.001). This reduction was driven by a lower rate of urgent revascularization in the PCI group (4.0% vs. 16.3%; hazard ratio, 0.23; 95% CI, 0.14 to 0.38; P<0.001), with no significant between-group differences in the rates of death and myocardial infarction. Urgent revascularizations that were triggered by myocardial infarction or ischemic changes on electrocardiography were less frequent in the PCI group (3.4% vs. 7.0%, P=0.01). In a landmark analysis, the rate of death or myocardial infection from 8 days to 2 years was lower in the PCI group than in the medical-therapy group (4.6% vs. 8.0%, P=0.04). Among registry patients, the rate of the primary end point was 9.0% at 2 years. Conclusions In patients with stable coronary artery disease, FFR-guided PCI, as compared with medical therapy alone, improved the outcome. Patients without ischemia had a favorable outcome with medical therapy alone. (Funded by St. Jude Medical; FAME 2 ClinicalTrials.gov number, NCT01132495 .).

Relevância:

30.00% 30.00%

Publicador: