Continuum percolation for Gibbs point processes


Autoria(s): Stucki, Kaspar
Data(s)

2013

Resumo

We consider percolation properties of the Boolean model generated by a Gibbs point process and balls with deterministic radius. We show that for a large class of Gibbs point processes there exists a critical activity, such that percolation occurs a.s. above criticality. For locally stable Gibbs point processes we show a converse result, i.e. they do not percolate a.s. at low activity.

Formato

application/pdf

Identificador

http://boris.unibe.ch/41525/1/2837-14438-1-PB.pdf

Stucki, Kaspar (2013). Continuum percolation for Gibbs point processes. Electronic communications in probability, 18(67), pp. 1-10. Institute of Mathematical Statistics 10.1214/ECP.v18-2837 <http://dx.doi.org/10.1214/ECP.v18-2837>

doi:10.7892/boris.41525

info:doi:10.1214/ECP.v18-2837

urn:issn:1083-589X

Idioma(s)

eng

Publicador

Institute of Mathematical Statistics

Relação

http://boris.unibe.ch/41525/

Direitos

info:eu-repo/semantics/openAccess

Fonte

Stucki, Kaspar (2013). Continuum percolation for Gibbs point processes. Electronic communications in probability, 18(67), pp. 1-10. Institute of Mathematical Statistics 10.1214/ECP.v18-2837 <http://dx.doi.org/10.1214/ECP.v18-2837>

Palavras-Chave #360 Social problems & social services #510 Mathematics
Tipo

info:eu-repo/semantics/article

info:eu-repo/semantics/publishedVersion

PeerReviewed