Continuum percolation for Gibbs point processes
Data(s) |
2013
|
---|---|
Resumo |
We consider percolation properties of the Boolean model generated by a Gibbs point process and balls with deterministic radius. We show that for a large class of Gibbs point processes there exists a critical activity, such that percolation occurs a.s. above criticality. For locally stable Gibbs point processes we show a converse result, i.e. they do not percolate a.s. at low activity. |
Formato |
application/pdf |
Identificador |
http://boris.unibe.ch/41525/1/2837-14438-1-PB.pdf Stucki, Kaspar (2013). Continuum percolation for Gibbs point processes. Electronic communications in probability, 18(67), pp. 1-10. Institute of Mathematical Statistics 10.1214/ECP.v18-2837 <http://dx.doi.org/10.1214/ECP.v18-2837> doi:10.7892/boris.41525 info:doi:10.1214/ECP.v18-2837 urn:issn:1083-589X |
Idioma(s) |
eng |
Publicador |
Institute of Mathematical Statistics |
Relação |
http://boris.unibe.ch/41525/ |
Direitos |
info:eu-repo/semantics/openAccess |
Fonte |
Stucki, Kaspar (2013). Continuum percolation for Gibbs point processes. Electronic communications in probability, 18(67), pp. 1-10. Institute of Mathematical Statistics 10.1214/ECP.v18-2837 <http://dx.doi.org/10.1214/ECP.v18-2837> |
Palavras-Chave | #360 Social problems & social services #510 Mathematics |
Tipo |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion PeerReviewed |