985 resultados para Parzen density estimates
Resumo:
Mature weight breeding values were estimated using a multi-trait animal model (MM) and a random regression animal model (RRM). Data consisted of 82 064 weight records from 8 145 animals, recorded from birth to eight years of age. Weights at standard ages were considered in the MM. All models included contemporary groups as fixed effects, and age of dam (linear and quadratic effects) and animal age as covariates. In the RRM, mean trends were modelled through a cubic regression on orthogonal polynomials of animal age and genetic maternal and direct and maternal permanent environmental effects were also included as random. Legendre polynomials of orders 4, 3, 6 and 3 were used for animal and maternal genetic and permanent environmental effects, respectively, considering five classes of residual variances. Mature weight (five years) direct heritability estimates were 0.35 (MM) and 0.38 (RRM). Rank correlation between sires' breeding values estimated by MM and RRM was 0.82. However, selecting the top 2% (12) or 10% (62) of the young sires based on the MM predicted breeding values, respectively 71% and 80% of the same sires would be selected if RRM estimates were used instead. The RRM modelled the changes in the (co) variances with age adequately and larger breeding value accuracies can be expected using this model.
Resumo:
The aim of the current study was to evaluate the expression of vascular endothelial growth factor (VEGF) and the microvascular density in canine soft-tissue sarcomas. Immunohistochemistry for VEGF expression was performed on 20 canine neoplasms by the streptavidin-biotin-peroxidase method using an anti-VEGF mouse monoclonal antibody (ab-119). The Volume fraction of microvessels in the sarcomas was quantified in hematoxylin and eosin-stained tissue sections. At least 10 fields of view (40x magnification) per neoplasm were analyzed by positioning a grid with 100 points and counting the microvessels that fell into the intersection points. This percentage was considered the volume fraction of these microvessels in the tumor section. VEGF expression was detected in 65% of the neoplasms. In 92.3% of the neoplasms, the expression occurred in the peritumor region; in 46.15%, in the intratumor region; and in 38.46%, the expression was present in both regions. The cells responsible for VEGF expression were fibroblasts and macrophages in the peritumor region or in the pseudocapsule and neoplastic cells in the intratumor region. Greater intratumoral VEGF was expressed in hemangiopericytomas (P = 0.04). No difference was present in the volume fraction of tumor microvessels between VEGF-positive and VEGF-negative neoplasms (P = 0.3416) or for the different types of neoplasms (P = 0.5). The results of this study suggest that VEGF participates in the angiogenesis of soft-tissue sat-coma in dogs. Additional research will be necessary to elucidate the contribution of VEGF to the progression of malignancy.
Resumo:
Data from the slaughter of 24,001 chickens that were part of a selection program for the production of commercial broilers were used to estimate genetic trend for absolute carcass (CW), breast meat (BRW), and leg (LW) weights, and relative carcass (CY), breast meat (BRY), and leg (LY) weights. The components of (co) variance and breeding values of individuals were obtained by the restricted maximum likelihood method applied to animal models. The relationship matrix was composed of 132,442 birds. The models included as random effects, maternal additive genetic and permanent environmental for CW, BRW, LW, CY, and BRY, and only maternal permanent environmental for LY, besides the direct additive genetic and residual effects, and as fixed effects, hatch week, parents' mating group and sex. The estimates of genetic trend were obtained by average regression of breeding value on generation, and the average genetic trend was estimated by regression coefficients. The genetic trends for CW (+ 6.0336 g/generation), BRW (+ 3.6723 g/generation), LW (+ 1.5846 g/generation), CY (+ 0.1195%/generation), and BRY (+ 0.1388%/generation) were positive, and they were in accordance with the objectives of the selection program for these traits. The genetic trend for LY(-0.0019%/generation) was negative, possibly due to the strong emphasis on selection for BRY and the negative correlations between these two traits.
Resumo:
A new age-redshift test is proposed in order to constrain H(0) on the basis of the existence of old high-redshift galaxies (OHRGs). In the flat Lambda cold dark matter model, the value of H(0) is heavily dependent on the mass density parameter Omega(M) = 1- Omega(Lambda). Such a degeneracy can be broken through a joint analysis involving the OHRG and baryon acoustic oscillation signature. By assuming a galaxy incubation time, t(inc) = 0.8 +/- 0.4 Gyr, our joint analysis yields a value of H(0) = 71 +/- 4 km s(-1) Mpc(-1) (1 sigma) with the best-fit density parameter Omega(M) = 0.27 +/- 0.03. Such results are in good agreement with independent studies from the Hubble Space Telescope key project and recent estimates of the Wilkinson Microwave Anisotropy Probe, thereby suggesting that the combination of these two independent phenomena provides an interesting method to constrain the Hubble constant.
Resumo:
We report on oxygen abundances determined from medium-resolution near-infrared spectroscopy for a sample of 57 carbon-enhanced metal-poor (CEMP) stars selected from the Hamburg/ESO Survey. The majority of our program stars exhibit oxygen-to-iron ratios in the range +0.5 < [O/Fe]< + 2.0. The [O/Fe] values for this sample are statistically compared to available high-resolution estimates for known CEMP stars as well as to high-resolution estimates for a set of carbon-normal metal-poor stars. Carbon, nitrogen, and oxygen abundance patterns for a sub-sample of these stars are compared to yield predictions for very metal-poor asymptotic giant branch (AGB) abundances in the recent literature. We find that the majority of our sample exhibit patterns that are consistent with previously studied CEMP stars having s-process-element enhancements and thus have very likely been polluted by carbon- and oxygen-enhanced material transferred from a metal-poor AGB companion.
Resumo:
We analyze the intrinsic polarization of two classical Be stars in the process of losing their circumstellar disks via a Be to normal B star transition originally reported by Wisniewski et al. During each of five polarimetric outbursts which interrupt these disk-loss events, we find that the ratio of the polarization across the Balmer jump (BJ+/BJ-) versus the V-band polarization traces a distinct loop structure as a function of time. Since the polarization change across the Balmer jump is a tracer of the innermost disk density whereas the V-band polarization is a tracer of the total scattering mass of the disk, we suggest that such correlated loop structures in Balmer jump-V-band polarization diagrams (BJV diagrams) provide a unique diagnostic of the radial distribution of mass within Be disks. We use the three-dimensional Monte Carlo radiation transfer code HDUST to reproduce the observed clockwise loops simply by turning ""on/off"" the mass decretion from the disk. We speculate that counterclockwise loop structures we observe in BJV diagrams might be caused by the mass decretion rate changing between subsequent ""on/off"" sequences. Applying this new diagnostic to a larger sample of Be disk systems will provide insight into the time-dependent nature of each system's stellar decretion rate.
Resumo:
We report the discovery by the CoRoT satellite of a new transiting giant planet in a 2.83 days orbit about a V = 15.5 solar analog star (M(*) = 1.08 +/- 0.08 M(circle dot), R(*) = 1.1 +/- 0.1 R(circle dot), T(eff) = 5675 +/- 80 K). This new planet, CoRoT-12b, has a mass of 0.92 +/- 0.07 M(Jup) and a radius of 1.44 +/- 0.13 R(Jup). Its low density can be explained by standard models for irradiated planets.
Resumo:
Objective: The aim of this study was to assess by atomic force microscopy (AFM) the effect of Er,Cr:YSGG laser application on the surface microtopography of radicular dentin. Background: Lasers have been used for various purposes in dentistry, where they are clinically effective when used in an appropriate manner. The Er, Cr: YSGG laser can be used for caries prevention when settings are below the ablation threshold. Materials and Methods: Four specimens of bovine dentin were irradiated using an Er, Cr:YSGG laser (lambda = 2.78 mu m), at a repetition rate of 20 Hz, with a 750-mu m-diameter sapphire tip and energy density of 2.8 J/cm(2) (12.5 mJ/pulse). After irradiation, surface topography was analyzed by AFM using a Si probe in tapping mode. Quantitative and qualitative information concerning the arithmetic average roughness (Ra) and power spectral density analyses were obtained from central, intermediate, and peripheral areas of laser pulses and compared with data from nonirradiated samples. Results: Dentin Ra for different areas were as follows: central, 261.26 (+/- 21.65) nm; intermediate, 83.48 (+/- 6.34) nm; peripheral, 45.8 (+/- 13.47) nm; and nonirradiated, 35.18 (+/- 2.9) nm. The central region of laser pulses presented higher ablation of intertubular dentin, with about 340-760 nm height, while intermediate, peripheral, and nonirradiated regions presented no difference in height of peritubular and interperitubular dentin. Conclusion: According to these results, we can assume that even when used at a low-energy density parameter, Er, Cr: YSGG laser can significantly alter the microtopography of radicular dentin, which is an important characteristic to be considered when laser is used for clinical applications.
Resumo:
Spectral changes of Na(2) in liquid helium were studied using the sequential Monte Carlo-quantum mechanics method. Configurations composed by Na(2) surrounded by explicit helium atoms sampled from the Monte Carlo simulation were submitted to time-dependent density-functional theory calculations of the electronic absorption spectrum using different functionals. Attention is given to both line shift and line broadening. The Perdew, Burke, and Ernzerhof (PBE1PBE, also known as PBE0) functional, with the PBE1PBE/6-311++G(2d,2p) basis set, gives the spectral shift, compared to gas phase, of 500 cm(-1) for the allowed X (1)Sigma(+)(g) -> B (1)Pi(u) transition, in very good agreement with the experimental value (700 cm(-1)). For comparison, cluster calculations were also performed and the first X (1)Sigma(+)(g) -> A (1)Sigma(+)(u) transition was also considered.
Resumo:
The nuclear isotropic shielding constants sigma((17)O) and sigma((13)C) of the carbonyl bond of acetone in water at supercritical (P=340.2 atm and T=673 K) and normal water conditions have been studied theoretically using Monte Carlo simulation and quantum mechanics calculations based on the B3LYP/6-311++G(2d,2p) method. Statistically uncorrelated configurations have been obtained from Monte Carlo simulations with unpolarized and in-solution polarized solute. The results show that solvent effects on the shielding constants have a significant contribution of the electrostatic interactions and that quantitative estimates for solvent shifts of shielding constants can be obtained modeling the water molecules by point charges (electrostatic embedding). In supercritical water, there is a decrease in the magnitude of sigma((13)C) but a sizable increase in the magnitude of sigma((17)O) when compared with the results obtained in normal water. It is found that the influence of the solute polarization is mild in the supercritical regime but it is particularly important for sigma((17)O) in normal water and its shielding effect reflects the increase in the average number of hydrogen bonds between acetone and water. Changing the solvent environment from normal to supercritical water condition, the B3LYP/6-311++G(2d,2p) calculations on the statistically uncorrelated configurations sampled from the Monte Carlo simulation give a (13)C chemical shift of 11.7 +/- 0.6 ppm for polarized acetone in good agreement with the experimentally inferred result of 9-11 ppm. (C) 2008 American Institute of Physics.
Resumo:
We investigate the electronic properties of Mn(B) substitutional doping in cubic boron nitride (BN), for different charge states, using density functional theory (DFT) calculations. We show that the neutral Mn has a nonmagnetic ground state (S=0). Upon charge injection, it is unambiguously shown that the Mn(B)(-) has a high-spin configuration with a strong, localized magnetic moment of 5 mu(Bohr). We developed a simple model, parameterized by the DFT results, that allows us to interpret the rules played by the crystal-field and exchange-correlation splitting in the magnetization process.
Resumo:
Gas aggregation is a well known method used to produce clusters of different materials with good size control, reduced dispersion, and precise stoichiometry. The cost of these systems is relatively high and they are generally dedicated apparatuses. Furthermore, the usual sample production speed of these systems is not as fast as physical vapor deposition devices posing a problem when thick samples are needed. In this paper we describe the development of a multipurpose gas aggregation system constructed as an adaptation to a magnetron sputtering system. The cost of this adaptation is negligible and its installation and operation are both remarkably simple. The gas flow for flux in the range of 60-130 SCCM (SCCM denotes cubic centimeter per minute at STP) is able to completely collimate all the sputtered material, producing spherical nanoparticles. Co nanoparticles were produced and characterized using electron microscopy techniques and Rutherford back-scattering analysis. The size of the particles is around 10 nm with around 75 nm/min of deposition rate at the center of a Gaussian profile nanoparticle beam.
Resumo:
One of the standard generalized-gradient approximations (GGAs) in use in modern electronic-structure theory [Perdew-Burke-Ernzerhof (PBE) GGA] and a recently proposed modification designed specifically for solids (PBEsol) are identified as particular members of a family of functionals taking their parameters from different properties of homogeneous or inhomogeneous electron liquids. Three further members of this family are constructed and tested, together with the original PBE and PBEsol, for atoms, molecules, and solids. We find that PBE, in spite of its popularity in solid-state physics and quantum chemistry, is not always the best performing member of the family and that PBEsol, in spite of having been constructed specifically for solids, is not the best for solids. The performance of GGAs for finite systems is found to sensitively depend on the choice of constraints stemming from infinite systems. Guidelines both for users and for developers of density functionals emerge from this work.
Resumo:
We show that the ground state of zigzag bilayer graphene nanoribbons is nonmagnetic. It also possesses a finite gap, which has a nonmonotonic dependence with the width as a consequence of the competition between bulk and strongly attractive edge interactions. All results were obtained using ab initio total-energy density functional theory calculations with the inclusion of parametrized van der Waals interactions.
Resumo:
The local-density approximation (LDA) together with the half occupation (transitionstate) is notoriously successful in the calculation of atomic ionization potentials. When it comes to extended systems, such as a semiconductor infinite system, it has been very difficult to find a way to half ionize because the hole tends to be infinitely extended (a Bloch wave). The answer to this problem lies in the LDA formalism itself. One proves that the half occupation is equivalent to introducing the hole self-energy (electrostatic and exchange correlation) into the Schrodinger equation. The argument then becomes simple: The eigenvalue minus the self-energy has to be minimized because the atom has a minimal energy. Then one simply proves that the hole is localized, not infinitely extended, because it must have maximal self-energy. Then one also arrives at an equation similar to the self- interaction correction equation, but corrected for the removal of just 1/2 electron. Applied to the calculation of band gaps and effective masses, we use the self- energy calculated in atoms and attain a precision similar to that of GW, but with the great advantage that it requires no more computational effort than standard LDA.