957 resultados para Partial differential equation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Hamilton Jacobi Bellman (HJB) equation is central to stochastic optimal control (SOC) theory, yielding the optimal solution to general problems specified by known dynamics and a specified cost functional. Given the assumption of quadratic cost on the control input, it is well known that the HJB reduces to a particular partial differential equation (PDE). While powerful, this reduction is not commonly used as the PDE is of second order, is nonlinear, and examples exist where the problem may not have a solution in a classical sense. Furthermore, each state of the system appears as another dimension of the PDE, giving rise to the curse of dimensionality. Since the number of degrees of freedom required to solve the optimal control problem grows exponentially with dimension, the problem becomes intractable for systems with all but modest dimension.

In the last decade researchers have found that under certain, fairly non-restrictive structural assumptions, the HJB may be transformed into a linear PDE, with an interesting analogue in the discretized domain of Markov Decision Processes (MDP). The work presented in this thesis uses the linearity of this particular form of the HJB PDE to push the computational boundaries of stochastic optimal control.

This is done by crafting together previously disjoint lines of research in computation. The first of these is the use of Sum of Squares (SOS) techniques for synthesis of control policies. A candidate polynomial with variable coefficients is proposed as the solution to the stochastic optimal control problem. An SOS relaxation is then taken to the partial differential constraints, leading to a hierarchy of semidefinite relaxations with improving sub-optimality gap. The resulting approximate solutions are shown to be guaranteed over- and under-approximations for the optimal value function. It is shown that these results extend to arbitrary parabolic and elliptic PDEs, yielding a novel method for Uncertainty Quantification (UQ) of systems governed by partial differential constraints. Domain decomposition techniques are also made available, allowing for such problems to be solved via parallelization and low-order polynomials.

The optimization-based SOS technique is then contrasted with the Separated Representation (SR) approach from the applied mathematics community. The technique allows for systems of equations to be solved through a low-rank decomposition that results in algorithms that scale linearly with dimensionality. Its application in stochastic optimal control allows for previously uncomputable problems to be solved quickly, scaling to such complex systems as the Quadcopter and VTOL aircraft. This technique may be combined with the SOS approach, yielding not only a numerical technique, but also an analytical one that allows for entirely new classes of systems to be studied and for stability properties to be guaranteed.

The analysis of the linear HJB is completed by the study of its implications in application. It is shown that the HJB and a popular technique in robotics, the use of navigation functions, sit on opposite ends of a spectrum of optimization problems, upon which tradeoffs may be made in problem complexity. Analytical solutions to the HJB in these settings are available in simplified domains, yielding guidance towards optimality for approximation schemes. Finally, the use of HJB equations in temporal multi-task planning problems is investigated. It is demonstrated that such problems are reducible to a sequence of SOC problems linked via boundary conditions. The linearity of the PDE allows us to pre-compute control policy primitives and then compose them, at essentially zero cost, to satisfy a complex temporal logic specification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A general review of stochastic processes is given in the introduction; definitions, properties and a rough classification are presented together with the position and scope of the author's work as it fits into the general scheme.

The first section presents a brief summary of the pertinent analytical properties of continuous stochastic processes and their probability-theoretic foundations which are used in the sequel.

The remaining two sections (II and III), comprising the body of the work, are the author's contribution to the theory. It turns out that a very inclusive class of continuous stochastic processes are characterized by a fundamental partial differential equation and its adjoint (the Fokker-Planck equations). The coefficients appearing in those equations assimilate, in a most concise way, all the salient properties of the process, freed from boundary value considerations. The writer’s work consists in characterizing the processes through these coefficients without recourse to solving the partial differential equations.

First, a class of coefficients leading to a unique, continuous process is presented, and several facts are proven to show why this class is restricted. Then, in terms of the coefficients, the unconditional statistics are deduced, these being the mean, variance and covariance. The most general class of coefficients leading to the Gaussian distribution is deduced, and a complete characterization of these processes is presented. By specializing the coefficients, all the known stochastic processes may be readily studied, and some examples of these are presented; viz. the Einstein process, Bachelier process, Ornstein-Uhlenbeck process, etc. The calculations are effectively reduced down to ordinary first order differential equations, and in addition to giving a comprehensive characterization, the derivations are materially simplified over the solution to the original partial differential equations.

In the last section the properties of the integral process are presented. After an expository section on the definition, meaning, and importance of the integral process, a particular example is carried through starting from basic definition. This illustrates the fundamental properties, and an inherent paradox. Next the basic coefficients of the integral process are studied in terms of the original coefficients, and the integral process is uniquely characterized. It is shown that the integral process, with a slight modification, is a continuous Markoff process.

The elementary statistics of the integral process are deduced: means, variances, and covariances, in terms of the original coefficients. It is shown that an integral process is never temporally homogeneous in a non-degenerate process.

Finally, in terms of the original class of admissible coefficients, the statistics of the integral process are explicitly presented, and the integral process of all known continuous processes are specified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three different categories of flow problems of a fluid containing small particles are being considered here. They are: (i) a fluid containing small, non-reacting particles (Parts I and II); (ii) a fluid containing reacting particles (Parts III and IV); and (iii) a fluid containing particles of two distinct sizes with collisions between two groups of particles (Part V).

Part I

A numerical solution is obtained for a fluid containing small particles flowing over an infinite disc rotating at a constant angular velocity. It is a boundary layer type flow, and the boundary layer thickness for the mixture is estimated. For large Reynolds number, the solution suggests the boundary layer approximation of a fluid-particle mixture by assuming W = Wp. The error introduced is consistent with the Prandtl’s boundary layer approximation. Outside the boundary layer, the flow field has to satisfy the “inviscid equation” in which the viscous stress terms are absent while the drag force between the particle cloud and the fluid is still important. Increase of particle concentration reduces the boundary layer thickness and the amount of mixture being transported outwardly is reduced. A new parameter, β = 1/Ω τv, is introduced which is also proportional to μ. The secondary flow of the particle cloud depends very much on β. For small values of β, the particle cloud velocity attains its maximum value on the surface of the disc, and for infinitely large values of β, both the radial and axial particle velocity components vanish on the surface of the disc.

Part II

The “inviscid” equation for a gas-particle mixture is linearized to describe the flow over a wavy wall. Corresponding to the Prandtl-Glauert equation for pure gas, a fourth order partial differential equation in terms of the velocity potential ϕ is obtained for the mixture. The solution is obtained for the flow over a periodic wavy wall. For equilibrium flows where λv and λT approach zero and frozen flows in which λv and λT become infinitely large, the flow problem is basically similar to that obtained by Ackeret for a pure gas. For finite values of λv and λT, all quantities except v are not in phase with the wavy wall. Thus the drag coefficient CD is present even in the subsonic case, and similarly, all quantities decay exponentially for supersonic flows. The phase shift and the attenuation factor increase for increasing particle concentration.

Part III

Using the boundary layer approximation, the initial development of the combustion zone between the laminar mixing of two parallel streams of oxidizing agent and small, solid, combustible particles suspended in an inert gas is investigated. For the special case when the two streams are moving at the same speed, a Green’s function exists for the differential equations describing first order gas temperature and oxidizer concentration. Solutions in terms of error functions and exponential integrals are obtained. Reactions occur within a relatively thin region of the order of λD. Thus, it seems advantageous in the general study of two-dimensional laminar flame problems to introduce a chemical boundary layer of thickness λD within which reactions take place. Outside this chemical boundary layer, the flow field corresponds to the ordinary fluid dynamics without chemical reaction.

Part IV

The shock wave structure in a condensing medium of small liquid droplets suspended in a homogeneous gas-vapor mixture consists of the conventional compressive wave followed by a relaxation region in which the particle cloud and gas mixture attain momentum and thermal equilibrium. Immediately following the compressive wave, the partial pressure corresponding to the vapor concentration in the gas mixture is higher than the vapor pressure of the liquid droplets and condensation sets in. Farther downstream of the shock, evaporation appears when the particle temperature is raised by the hot surrounding gas mixture. The thickness of the condensation region depends very much on the latent heat. For relatively high latent heat, the condensation zone is small compared with ɅD.

For solid particles suspended initially in an inert gas, the relaxation zone immediately following the compression wave consists of a region where the particle temperature is first being raised to its melting point. When the particles are totally melted as the particle temperature is further increased, evaporation of the particles also plays a role.

The equilibrium condition downstream of the shock can be calculated and is independent of the model of the particle-gas mixture interaction.

Part V

For a gas containing particles of two distinct sizes and satisfying certain conditions, momentum transfer due to collisions between the two groups of particles can be taken into consideration using the classical elastic spherical ball model. Both in the relatively simple problem of normal shock wave and the perturbation solutions for the nozzle flow, the transfer of momentum due to collisions which decreases the velocity difference between the two groups of particles is clearly demonstrated. The difference in temperature as compared with the collisionless case is quite negligible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho apresenta uma modelagem matemática para o processo de aquecimento de um corpo exposto a uma fonte pontual de radiação térmica. O resultado original que permite a solução exata de uma equação diferencial parcial não linear a partir de uma seqüência de problemas lineares também é apresentado. Gráficos gerados com resultados obtidos pelo método de diferenças finitas ilustram a solução do problema proposto.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A engenharia geotécnica é uma das grandes áreas da engenharia civil que estuda a interação entre as construções realizadas pelo homem ou de fenômenos naturais com o ambiente geológico, que na grande maioria das vezes trata-se de solos parcialmente saturados. Neste sentido, o desempenho de obras como estabilização, contenção de barragens, muros de contenção, fundações e estradas estão condicionados a uma correta predição do fluxo de água no interior dos solos. Porém, como a área das regiões a serem estudas com relação à predição do fluxo de água são comumente da ordem de quilômetros quadrados, as soluções dos modelos matemáticos exigem malhas computacionais de grandes proporções, ocasionando sérias limitações associadas aos requisitos de memória computacional e tempo de processamento. A fim de contornar estas limitações, métodos numéricos eficientes devem ser empregados na solução do problema em análise. Portanto, métodos iterativos para solução de sistemas não lineares e lineares esparsos de grande porte devem ser utilizados neste tipo de aplicação. Em suma, visto a relevância do tema, esta pesquisa aproximou uma solução para a equação diferencial parcial de Richards pelo método dos volumes finitos em duas dimensões, empregando o método de Picard e Newton com maior eficiência computacional. Para tanto, foram utilizadas técnicas iterativas de resolução de sistemas lineares baseados no espaço de Krylov com matrizes pré-condicionadoras com a biblioteca numérica Portable, Extensible Toolkit for Scientific Computation (PETSc). Os resultados indicam que quando se resolve a equação de Richards considerando-se o método de PICARD-KRYLOV, não importando o modelo de avaliação do solo, a melhor combinação para resolução dos sistemas lineares é o método dos gradientes biconjugados estabilizado mais o pré-condicionador SOR. Por outro lado, quando se utiliza as equações de van Genuchten deve ser optar pela combinação do método dos gradientes conjugados em conjunto com pré-condicionador SOR. Quando se adota o método de NEWTON-KRYLOV, o método gradientes biconjugados estabilizado é o mais eficiente na resolução do sistema linear do passo de Newton, com relação ao pré-condicionador deve-se dar preferência ao bloco Jacobi. Por fim, há evidências que apontam que o método PICARD-KRYLOV pode ser mais vantajoso que o método de NEWTON-KRYLOV, quando empregados na resolução da equação diferencial parcial de Richards.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neste trabalho o processo não linear de transmissão de calor condução-radiação é abordado num contexto bidimensional plano e simulado com o uso de um esquema linear em diferenças finitas. O problema original é tratado como o limite de uma sequencia de problemas lineares, do tipo condução-convecção. Este limite, cuja existência é comprovada, é facilmente obtido a partir de procedimentos básicos, accessíveis a qualquer estudante de engenharia, permitindo assim o emprego de hipóteses mais realistas, já que não se tem o limitante matemático para a abordagem numérica de uma equação diferencial parcial elíptica. Neste trabalho foi resolvido o problema de condução de calor em regime permanente em uma placa com condições de contorno convectivas e radioativas utilizando-se o software MatLab, vale ressaltar, que a mesma metodologia é aplicável para geometrias mais complexas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modelos de evolução populacional são há muito tempo assunto de grande relevância, principalmente quando a população de estudo é composta por vetores de doenças. Tal importância se deve ao fato de existirem milhares de doenças que são propagadas por espécies específicas e conhecer como tais populações se comportam é vital quando pretende-se criar políticas públicas para controlar a sua proliferação. Este trabalho descreve um problema de evolução populacional difusivo com armadilhas locais e tempo de reprodução atrasado, o problema direto descreve a densidade de uma população uma vez conhecidos os parâmetros do modelo onde sua solução é obtida por meio da técnica de transformada integral generalizada, uma técnica numérico-analítica. Porém a solução do problema direto, por si só, não permite a simulação computacional de uma população em uma aplicação prática, uma vez que os parâmetros do modelo variam de população para população e precisam, portanto, ter seus valores conhecidos. Com o objetivo de possibilitar esta caracterização, o presente trabalho propõe a formulação e solução do problema inverso, estimando os parâmetros do modelo a partir de dados da população utilizando para tal tarefa dois métodos Bayesianos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several recent control applications consider the coordination of subsystems through local interaction. Often the interaction has a symmetry in state space, e.g. invariance with respect to a uniform translation of all subsystem values. The present paper shows that in presence of such symmetry, fundamental properties can be highlighted by viewing the distributed system as the discrete approximation of a partial differential equation. An important fact is that the symmetry on the state space differs from the popular spatial invariance property, which is not necessary for the present results. The relevance of the viewpoint is illustrated on two examples: (i) ill-conditioning of interaction matrices in coordination/consensus problems and (ii) the string instability issue. ©2009 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new region-based unified tensor level set model for image segmentation. This model introduces a three-order tensor to comprehensively depict features of pixels, e.g., gray value and the local geometrical features, such as orientation and gradient, and then, by defining a weighted distance, we generalized the representative region-based level set method from scalar to tensor. The proposed model has four main advantages compared with the traditional representative method as follows. First, involving the Gaussian filter bank, the model is robust against noise, particularly the salt-and pepper-type noise. Second, considering the local geometrical features, e. g., orientation and gradient, the model pays more attention to boundaries and makes the evolving curve stop more easily at the boundary location. Third, due to the unified tensor pixel representation representing the pixels, the model segments images more accurately and naturally. Fourth, based on a weighted distance definition, the model possesses the capacity to cope with data varying from scalar to vector, then to high-order tensor. We apply the proposed method to synthetic, medical, and natural images, and the result suggests that the proposed method is superior to the available representative region-based level set method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new image segmentation method that applies an edge-based level set method in a relay fashion. The proposed method segments an image in a series of nested subregions that are automatically created by shrinking the stabilized curves in their previous subregions. The final result is obtained by combining all boundaries detected in these subregions. The proposed method has the following three advantages: 1) It can be automatically executed without human-computer interactions; 2) it applies the edge-based level set method with relay fashion to detect all boundaries; and 3) it automatically obtains a full segmentation without specifying the number of relays in advance. The comparison experiments illustrate that the proposed method performs better than the representative level set methods, and it can obtain similar or better results compared with other popular segmentation algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

基于奇异值分解和能量最小原则,提出了一种自适应图像降噪算法,并给出了基于有界变差的能量降噪模型的代数形式。通过在矩阵范数意义下求能量最小,自适应确定去噪图像重构的奇异值个数。该算法的特点是将能量最小法则和奇异值分解结合起来,在代数空间中建立了一种自适应的图像降噪算法。与基于压缩比和奇异值分解的降噪方法相比,由于该算法避免了图像压缩比函数及其拐点的计算,因此具有快速去噪和简单可行的优点。实验结果证明,该算法是有效的。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method will be described for finding the shape of a smooth apaque object form a monocular image, given a knowledge of the surface photometry, the position of the lightsource and certain auxiliary information to resolve ambiguities. This method is complementary to the use of stereoscopy which relies on matching up sharp detail and will fail on smooth objects. Until now the image processing of single views has been restricted to objects which can meaningfully be considered two-dimensional or bounded by plane surfaces. It is possible to derive a first-order non-linear partial differential equation in two unknowns relating the intensity at the image points to the shape of the objects. This equation can be solved by means of an equivalent set of five ordinary differential equations. A curve traced out by solving this set of equations for one set of starting values is called a characteristic strip. Starting one of these strips from each point on some initial curve will produce the whole solution surface. The initial curves can usually be constructed around so-called singular points. A number of applications of this metod will be discussed including one to lunar topography and one to the scanning electron microscope. In both of these cases great simplifications occur in the equations. A note on polyhedra follows and a quantitative theory of facial make-up is touched upon. An implementation of some of these ideas on the PDP-6 computer with its attached image-dissector camera at the Artificial intelligence Laboratory will be described, and also a nose-recognition program.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transverse trace-free (TT) tensors play an important role in the initial conditions of numerical relativity, containing two of the component freedoms. Expressing a TT tensor entirely, by the choice of two scalar potentials, is not a trivial task however. Assuming the added condition of axial symmetry, expressions are given in both spherical and cylindrical coordinates, for TT tensors in flat space. A coordinate relation is then calculated between the scalar potentials of each coordinate system. This is extended to a non-flat space, though only one potential is found. The remaining equations are reduced to form a second order partial differential equation in two of the tensor components. With the axially symmetric flat space tensors, the choice of potentials giving Bowen-York conformal curvatures, are derived. A restriction is found for the potentials which ensure an axially symmetric TT tensor, which is regular at the origin, and conditions on the potentials, which give an axially symmetric TT tensor with a spherically symmetric scalar product, are also derived. A comparison is made of the extrinsic curvatures of the exact Kerr solution and numerical Bowen-York solution for axially symmetric black hole space-times. The Brill wave, believed to act as the difference between the Kerr and Bowen-York space-times, is also studied, with an approximate numerical solution found for a mass-factor, under different amplitudes of the metric.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamics of a population undergoing selection is a central topic in evolutionary biology. This question is particularly intriguing in the case where selective forces act in opposing directions at two population scales. For example, a fast-replicating virus strain outcompetes slower-replicating strains at the within-host scale. However, if the fast-replicating strain causes host morbidity and is less frequently transmitted, it can be outcompeted by slower-replicating strains at the between-host scale. Here we consider a stochastic ball-and-urn process which models this type of phenomenon. We prove the weak convergence of this process under two natural scalings. The first scaling leads to a deterministic nonlinear integro-partial differential equation on the interval $[0,1]$ with dependence on a single parameter, $\lambda$. We show that the fixed points of this differential equation are Beta distributions and that their stability depends on $\lambda$ and the behavior of the initial data around $1$. The second scaling leads to a measure-valued Fleming-Viot process, an infinite dimensional stochastic process that is frequently associated with a population genetics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three paradigms for distributed-memory parallel computation that free the application programmer from the details of message passing are compared for an archetypal structured scientific computation -- a nonlinear, structured-grid partial differential equation boundary value problem -- using the same algorithm on the same hardware. All of the paradigms -- parallel languages represented by the Portland Group's HPF, (semi-)automated serial-to-parallel source-to-source translation represented by CAP-Tools from the University of Greenwich, and parallel libraries represented by Argonne's PETSc -- are found to be easy to use for this problem class, and all are reasonably effective in exploiting concurrency after a short learning curve. The level of involvement required by the application programmer under any paradigm includes specification of the data partitioning, corresponding to a geometrically simple decomposition of the domain of the PDE. Programming in SPMD style for the PETSc library requires writing only the routines that discretize the PDE and its Jacobian, managing subdomain-to-processor mappings (affine global-to-local index mappings), and interfacing to library solver routines. Programming for HPF requires a complete sequential implementation of the same algorithm as a starting point, introduction of concurrency through subdomain blocking (a task similar to the index mapping), and modest experimentation with rewriting loops to elucidate to the compiler the latent concurrency. Programming with CAPTools involves feeding the same sequential implementation to the CAPTools interactive parallelization system, and guiding the source-to-source code transformation by responding to various queries about quantities knowable only at runtime. Results representative of "the state of the practice" for a scaled sequence of structured grid problems are given on three of the most important contemporary high-performance platforms: the IBM SP, the SGI Origin 2000, and the CRAYY T3E.