833 resultados para PROBABILITY REPRESENTATION
Resumo:
A tag-based item recommendation method generates an ordered list of items, likely interesting to a particular user, using the users past tagging behaviour. However, the users tagging behaviour varies in different tagging systems. A potential problem in generating quality recommendation is how to build user profiles, that interprets user behaviour to be effectively used, in recommendation models. Generally, the recommendation methods are made to work with specific types of user profiles, and may not work well with different datasets. In this paper, we investigate several tagging data interpretation and representation schemes that can lead to building an effective user profile. We discuss the various benefits a scheme brings to a recommendation method by highlighting the representative features of user tagging behaviours on a specific dataset. Empirical analysis shows that each interpretation scheme forms a distinct data representation which eventually affects the recommendation result. Results on various datasets show that an interpretation scheme should be selected based on the dominant usage in the tagging data (i.e. either higher amount of tags or higher amount of items present). The usage represents the characteristic of user tagging behaviour in the system. The results also demonstrate how the scheme is able to address the cold-start user problem.
Resumo:
This project is a step forward in the study of text mining where enhanced text representation with semantic information plays a significant role. It develops effective methods of entity-oriented retrieval, semantic relation identification and text clustering utilizing semantically annotated data. These methods are based on enriched text representation generated by introducing semantic information extracted from Wikipedia into the input text data. The proposed methods are evaluated against several start-of-art benchmarking methods on real-life data-sets. In particular, this thesis improves the performance of entity-oriented retrieval, identifies different lexical forms for an entity relation and handles clustering documents with multiple feature spaces.
Resumo:
Students explored variation and expectation in a probability activity at the end of the first year of a 3-year longitudinal study across grades 4-6. The activity involved experiments in tossing coins both manually and with simulation using the graphing software, TinkerPlots. Initial responses indicated that the students were aware of uncertainty, although an understanding of chance concepts appeared limited. Predicting outcomes of 10 tosses reflected an intuitive notion of equiprobability, with little awareness of variation. Understanding the relationship between experimental and theoretical probability did not emerge until multiple outcomes and representations were generated with the software.
Resumo:
Local spatio-temporal features with a Bag-of-visual words model is a popular approach used in human action recognition. Bag-of-features methods suffer from several challenges such as extracting appropriate appearance and motion features from videos, converting extracted features appropriate for classification and designing a suitable classification framework. In this paper we address the problem of efficiently representing the extracted features for classification to improve the overall performance. We introduce two generative supervised topic models, maximum entropy discrimination LDA (MedLDA) and class- specific simplex LDA (css-LDA), to encode the raw features suitable for discriminative SVM based classification. Unsupervised LDA models disconnect topic discovery from the classification task, hence yield poor results compared to the baseline Bag-of-words framework. On the other hand supervised LDA techniques learn the topic structure by considering the class labels and improve the recognition accuracy significantly. MedLDA maximizes likelihood and within class margins using max-margin techniques and yields a sparse highly discriminative topic structure; while in css-LDA separate class specific topics are learned instead of common set of topics across the entire dataset. In our representation first topics are learned and then each video is represented as a topic proportion vector, i.e. it can be comparable to a histogram of topics. Finally SVM classification is done on the learned topic proportion vector. We demonstrate the efficiency of the above two representation techniques through the experiments carried out in two popular datasets. Experimental results demonstrate significantly improved performance compared to the baseline Bag-of-features framework which uses kmeans to construct histogram of words from the feature vectors.
Resumo:
So far, low probability differentials for the key schedule of block ciphers have been used as a straightforward proof of security against related-key differential analysis. To achieve resistance, it is believed that for cipher with k-bit key it suffices the upper bound on the probability to be 2− k . Surprisingly, we show that this reasonable assumption is incorrect, and the probability should be (much) lower than 2− k . Our counter example is a related-key differential analysis of the well established block cipher CLEFIA-128. We show that although the key schedule of CLEFIA-128 prevents differentials with a probability higher than 2− 128, the linear part of the key schedule that produces the round keys, and the Feistel structure of the cipher, allow to exploit particularly chosen differentials with a probability as low as 2− 128. CLEFIA-128 has 214 such differentials, which translate to 214 pairs of weak keys. The probability of each differential is too low, but the weak keys have a special structure which allows with a divide-and-conquer approach to gain an advantage of 27 over generic analysis. We exploit the advantage and give a membership test for the weak-key class and provide analysis of the hashing modes. The proposed analysis has been tested with computer experiments on small-scale variants of CLEFIA-128. Our results do not threaten the practical use of CLEFIA.
Resumo:
Representation of Aborigines by Aborigines and non -Aborigines; articles by Andrew Dewdney, Mervyn Biship, Alana Harris, Sandy Edwards, Rea Saunders, Ricky Maynard , Brenda Croft, Ruth Braunstein, Michael Riley, Huw Davies, Penny Taylor, Darlene McKenzie, Kurt Brereton and Eric Michaels, annotated separately.
Resumo:
Histories of past communities are embedded in landscapes around the world but many are suffering from material change or neglect of their fabric. This study was aimed at discovering and representing the authentic intangible experience of two historic landscapes for conservation purposes. A 2500 year old site in Yangzhou, China and a 2000 year old site on St Helena Island in Moreton Bay were found to be managed under two culturally different regimes of authenticity. This research has contributed to challenging the notion that there is only one way to conserve authenticity in historic landscapes of the Asia Pacific.
Resumo:
Previous neuroimaging research has attempted to demonstrate a preferential involvement of the human mirror neuron system (MNS) in the comprehension of effector-related action word (verb) meanings. These studies have assumed that Broca's area (or Brodmann's area 44) is the homologue of a monkey premotor area (F5) containing mouth and hand mirror neurons, and that action word meanings are shared with the mirror system due to a proposed link between speech and gestural communication. In an fMRI experiment, we investigated whether Broca's area shows mirror activity solely for effectors implicated in the MNS. Next, we examined the responses of empirically determined mirror areas during a language perception task comprising effector-specific action words, unrelated words and nonwords. We found overlapping activity for observation and execution of actions with all effectors studied, i.e., including the foot, despite there being no evidence of foot mirror neurons in the monkey or human brain. These "mirror" areas showed equivalent responses for action words, unrelated words and nonwords, with all of these stimuli showing increased responses relative to visual character strings. Our results support alternative explanations attributing mirror activity in Broca's area to covert verbalisation or hierarchical linearisation, and provide no evidence that the MNS makes a preferential contribution to comprehending action word meanings.
Resumo:
In this paper, we use an experimental design to compare the performance of elicitation rules for subjective beliefs. Contrary to previous works in which elicited beliefs are compared to an objective benchmark, we consider a purely subjective belief framework (confidence in one’s own performance in a cognitive task and a perceptual task). The performance of different elicitation rules is assessed according to the accuracy of stated beliefs in predicting success. We measure this accuracy using two main factors: calibration and discrimination. For each of them, we propose two statistical indexes and we compare the rules’ performances for each measurement. The matching probability method provides more accurate beliefs in terms of discrimination, while the quadratic scoring rule reduces overconfidence and the free rule, a simple rule with no incentives, which succeeds in eliciting accurate beliefs. Nevertheless, the matching probability appears to be the best mechanism for eliciting beliefs due to its performances in terms of calibration and discrimination, but also its ability to elicit consistent beliefs across measures and across tasks, as well as its empirical and theoretical properties.
Resumo:
This paper presents a novel vision-based underwater robotic system for the identification and control of Crown-Of-Thorns starfish (COTS) in coral reef environments. COTS have been identified as one of the most significant threats to Australia's Great Barrier Reef. These starfish literally eat coral, impacting large areas of reef and the marine ecosystem that depends on it. Evidence has suggested that land-based nutrient runoff has accelerated recent outbreaks of COTS requiring extensive use of divers to manually inject biological agents into the starfish in an attempt to control population numbers. Facilitating this control program using robotics is the goal of our research. In this paper we introduce a vision-based COTS detection and tracking system based on a Random Forest Classifier (RFC) trained on images from underwater footage. To track COTS with a moving camera, we embed the RFC in a particle filter detector and tracker where the predicted class probability of the RFC is used as an observation probability to weight the particles, and we use a sparse optical flow estimation for the prediction step of the filter. The system is experimentally evaluated in a realistic laboratory setup using a robotic arm that moves a camera at different speeds and heights over a range of real-size images of COTS in a reef environment.
Resumo:
This chapter addresses opportunities for problem posing in developing young children’s statistical literacy, with a focus on student-directed investigations. Although the notion of problem posing has broadened in recent years, there nevertheless remains limited research on how problem posing can be integrated within the regular mathematics curriculum, especially in the areas of statistics and probability. The chapter first reviews briefly aspects of problem posing that have featured in the literature over the years. Consideration is next given to the importance of developing children’s statistical literacy in which problem posing is an inherent feature. Some findings from a school playground investigation conducted in four, fourth-grade classes illustrate the different ways in which children posed investigative questions, how they made predictions about their outcomes and compared these with their findings, and the ways in which they chose to represent their findings.