871 resultados para POLYMER-MATRIX COMPOSITES


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Composites made of calcium modified lead titanate ceramic powder and poly (ether-ether-ketone) high performance polymer matrix were prepared in the film form using a hot press. The acoustic and electromechanical properties of the composites have been determined using the ultrasonic immersion technique and piezoelectric spectroscopy, respectively. The composite film with 60 - 40 vol.% PTCa/PEEK was tested as acoustic emission detector. Preliminary results shown that the piezo composite can be used as sensor to evaluate the behavior of materials.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Composites made of Calcium-modified lead titanate (PTCa) and poly (ether-etherketone) (PEEK) high performance polymer matrix were prepared in the film form using a hot press. The ceramic volume fraction reaches up to 60 percent providing a composite with 0-3 and 1-3 mixed connectivities due to the high ceramic content and the resulting materials could be considered PEEK-bonded PTCa particulate composite. The composites were characterized using piezoelectric spectroscopy and ultrasonic immersion techniques. Values up to 38.5 pC/N were obtained for the longitudinal d33 piezoelectric coefficient. The composite was surface-mounted on a carbon fiber plate-like specimen and the ability of the PTCa/PEEK composite to detect acoustic emission (AE) is reported. © 2006 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The corrosion behaviour of metal matrix composites (MMCs) is strictly linked with the presence of heterogeneities such as reinforcement phase, microcrevices, porosity, secondary phase precipitates, and interaction products. Most of the literature related to corrosion behaviour of aluminium matrix composites (AMCs) is focused on SiC reinforced AMCs. On the other hand, there is very limited information available in the literature related to the tribocorrosion behaviour of AMCs. Therefore, the present work aims to investigate corrosion and tribocorrosion behaviour of Al-Si-Cu-Mg alloy matrix composites reinforced with B4C particulates. Corrosion behaviour of 15 and 19% (vol) B4C reinforced Al-Si-Cu-Mg matrix composites and the base alloy was investigated in 0.05M NaCl solution by performing immersion tests and potentiodynamic polarisation tests. Tribocorrosion behaviour of Al-Si-Cu-Mg alloy and its composites were also investigated in 0.05M NaCl solution. The tests were carried out against alumina ball using a reciprocating ball-on-plate tribometer. Electrochemical measurements were performed before, during, and after the sliding tests together with the recording of the tangential force. Results suggest that particle addition did not affect significantly the tendency of corrosion of Al-Si-Cu-Mg alloy without mechanical interactions. During the tribocorrosion tests, the counter material was found to slide mainly on the B4C particles, which protected the matrix alloy from severe wear damage. Furthermore, the wear debris were accumulated on the worn surfaces and entrapped between the reinforcing particles. Therefore, the tendency of corrosion and the corrosion rate decreased in Al-Si-Cu-Mg matrix B4C reinforced composites during the sliding in 0.05M NaCl solution. © 2013 Elsevier B.V.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEB

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Ciência dos Materiais - FEIS

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The concern with the environment preservation has done with that researchers as well as industries invest in the search for materials that come from renewable sources. Natural fibers, because they are ecologically correct and have low cost, have been studied as a possible substitute, even if partial, of synthetic fibers in the development of polymeric composites. In this context, the hybrid composites (natural/synthetic) increase considerably the range of application of natural composites. The auto industry, in its constant quest for good mechanical properties materials which are developed with sustainability, has in composites with hybrid reinforcement a very viable alternative. In the present work, the nature Crown pineapple fibers and nature Crown pineapple fibers treated with alkaline solution were studied in order to evaluate the influence of chemical treatment in its properties. For this techniques were used x-ray diffractometry, Thermogravimetry and Infrared Spectroscopy (FTIR). Composites have been developed using polypropylene, reinforced with pineapple fibers and pineapple fibers hybrids/glass fibres, both with levels of 5 and 10%. These composites were analyzed by Thermogravimetry techniques and tested by traction. The realization of this work indicated that although the chemical treatment did not affect the thermal stability of the fibers, caused an increase in crystallinity index fibers and decreased its hydrophilic. The tests performed on composite indicated that the composites process was suitable because it provided good dispersion of the polymer matrix. The addition of natural fibers from the pineapple's Crown, in a proportion of 10%, provided the greatest increase in modulus of elasticity (27%) when compared to the pure polymer