949 resultados para P-type Atpase
Resumo:
Three new solution processable quinoxaline based donor-acceptor-donor (D-A-D) type molecules have been synthesized for application in field effect transistors. These molecules were characterized by UV-visible spectroscopy, thermal gravimetric analysis, differential scanning calorimetry and cyclic voltammetry. DFT calculation gives deeper insight into the electronic structure of these molecules. The crystallinity and morphology features of thin film were investigated using X-ray diffraction. These molecules show liquid crystalline phase confirmed by DSC and optical polarizing microscopy. Investigation of their field effect transistor performance indicated that these molecules exhibited p-type mobility up to 9.7 x 10 (4) cm(2) V (1) s (1) and on/off ratio of 10(4). (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Photoresponse of n-type indium-doped ZnO and a p-type polymer (PEDOT:PSS) heterojunction devices are studied, juxtaposed with the photoluminescence of the In-ZnO samples. In addition to the expected photoresponse in the ultraviolet, the heterojunctions exhibit significant photoresponse to the visible (532 nm). However, neither the doped ZnO nor PEDOT: PSS individually show any photoresponse to visible light. The sub-bandgap photoresponse of the heterojunction originates from visible photon mediated e-h generation between the In-ZnO valence band and localized states lying within the band gap. Though increased doping of In-ZnO has limited effect on the photoluminescence, it significantly diminishes the photoresponse. The study indicates that optimally doped devices are promising for the detection of wavelengths in selected windows in the visible. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4704655]
Resumo:
Electrical conductivity and Seebeck coefficient of calcium-doped YFeO3, a potential cathode material in solid oxide fuel cells (SOFC), are measured as function of temperature and composition in air to resolve conflicts in the literature both on the nature of conduction (n- or p-type) and the types of defects (majority and the minority) present. Compositions of Y1-xCaxFeO3-delta with x = 0.0, 0.025, 0.05 and 0.1 are studied in the temperature range from 625 to 1250 K. All Y1-xCaxFeO3-delta samples show p-type semiconducting behaviour. Addition of Ca up to 5% dramatically increases the conductivity of YFeO3; increase is more gradual up to 10%. A second phase Ca2Fe2O5 appears in the microstructure for Ca concentrations in excess of 11%.
Resumo:
We report on the substrate assisted doping of ZnO nanowires grown by a vapor transport technique. The nanowires were grown non-catalytically on multiwalled carbon nanotubes (MWCNTs) and soda lime glass (SLG). Carbon from MWCNTs and sodium from SLG diffuse into ZnO during the growth and are distributed uniformly and provide doping. An advantage associated with the technique is that no conventional external dopant source is required to obtain doped ZnO nanowires. The diameter, length and hence the aspect ratio can easily be varied by changing the growth conditions. The transport studies on both carbon and sodium doped ZnO support the p-type nature of ZnO. The p-type nature of carbon doped ZnO is stable for at least eight months.
Resumo:
Void filling in (I) Bi-x-added Co4Sb12 or (II) Sb/Bi substitution of Co4Sb12-xBix has been investigated for structural and thermoelectric properties evaluation. X-ray powder data Rietveld refinements combined with electron probe microanalyses showed a polycrystalline and practically Bi-free CoSb3 skutterudite phase as the major constituent as well as a secondary Bi phase in the grain boundaries. For series I alloys, the electrical conductivity, Seebeck coefficient and thermal conductivity were measured as a function of temperature in the range from 450 to 750 K. The electrical conductivity of all the samples increased with increasing temperature, showing a semiconducting nature with smaller values of the Seebeck coefficient for higher Bi fractions. Conduction over the entire temperature range was found to arise from a single p-type carrier. Thermal conductivity showed a reduction with Bi added in all the samples, except for Bi0.75Co4Sb12, and the lowest lattice thermal conductivity was found for a Bi-added fraction of 0.5. The maximum zT value of 0.53 at 632 K is higher than that of Co4Sb12.
Resumo:
Branched CNTs with nitrogen doped/un-doped intratubular junctions have been synthesized by a simple one-step co-pyrolysis of hexamethylenetetramine and benzene. The difference in the vapor pressure and the insolubility of the precursors are the keys for the formation of the branched intratubular junctions. The junctions behave like Schottky diodes with nitrogen-doped portion as metal and un-doped portion as p-type semiconductor. The junctions also behave like p-type field effect transistors with a very large on/off ratio.
Composition, structure and electrical properties of DC reactive magnetron sputtered Al2O3 thin films
Resumo:
Thin films of alumina (Al2O3) were deposited over Si < 1 0 0 > substrates at room temperature at an oxygen gas pressure of 0.03 Pa and sputtering power of 60 W using DC reactive magnetron sputtering. The composition of the as-deposited film was analyzed by X-ray photoelectron spectroscopy and the O/Al atomic ratio was found to be 1.72. The films were then annealed in vacuum to 350, 550 and 750 degrees C and X-ray diffraction results revealed that both as-deposited and post deposition annealed films were amorphous. The surface morphology and topography of the films was studied using scanning electron microscopy and atomic force microscopy, respectively. A progressive decrease in the root mean square (RMS) roughness of the films from 1.53 nm to 0.7 nm was observed with increase in the annealing temperature. Al-Al2O3-Al thin film capacitors were then fabricated on p-type Si < 1 0 0 > substrate to study the effect of temperature and frequency on the dielectric property of the films and the results are discussed.
Resumo:
We report on multifunctional devices based on CNT arrays-ZnO nanowires hybrid architectures. The hybrid structure exhibit excellent high current Schottky like behavior with ZnO as p-type and an ideality factor close to the ideal value. Further the CNT-ZnO hybrid structures can be used as high current p-type field effect transistors that can deliver currents of the order of milliamperes and also can be used as ultraviolet detectors with controllable current on-off ratio and response time. The p-type nature of ZnO and possible mechanism for the rectifying characteristics of CNT-ZnO has been presented.
Resumo:
Zinc Oxide (ZnO) and indium doped ZnO (IZO) thin films with different indium compositions were grown on p-type boron doped Si substrates by pulsed laser deposition (PLD). The effect of indium concentration on the structural, optical and electrical properties of the film was studied. XRD, XPS and Raman studies confirm the single phase formation and successful doping of In in to ZnO. We observed various photoluminescence emissions, ranging from UV to visible, with the incorporation of In into ZnO. Room temperature Current-Voltage (I-V) characteristics showed good p-n junction properties for n-type-undoped and In doped ZnO with p-type substrates. The turn on voltage was observed to be decreasing with increase in In composition.
Resumo:
We investigate the thermoelectric properties of beta-FeSi2 using first principles electronic structure and Boltzmann transport calculations. We report a high thermopower for both p- and n-type beta-FeSi2 over a wide range of carrier concentration and in addition find the performance for n-type to be higher than for the p-type. Our results indicate that, depending upon temperature, a doping level of 3 x 10(20) to 2 x 10(21) cm(-3) may optimize the thermoelectric performance. (C) 2013 AIP Publishing LLC.
Resumo:
Skutterudites Fe(0.)2Co(3.8)Sb(12),Te-x (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6) were synthesized by induction melting at 1273 K, followed by annealing at 923 K for 144 h. X-ray powder diffraction and electron microprobe analysis confirmed the presence of the skutterudite phase as the main phase. The temperature-dependent transport properties were measured for all the samples from 300 to 818 K. A positive Seebeck coefficient (holes are majority carriers) was obtained in Fe0.2Co3.8Sb 12 in the whole temperature range. Thermally excited carriers changed from n-type to p-type in Fe(0.)2Co(3.8)Sb(12),Te-x 19Te0.1 at 570 K, while in all the other samples, Fe(0.)2Co(3.8)Sb(12),Te-x (x = 0.2, 0.3, 0.4, 0.5, 0.6) exhibited negative Seebeck coefficients in the entire temperature range measured. Whereas for the alloys up to x = 0.2 (Fe(0.)2Co(3.8)Sb(12),Te-x ) the electrical resistivity decreased by charge compensation, it increased for x> 0.2 with an increase in Te content as a result of an increase in the electron concentration. The thermal conductivity decreased with Te substitution owing to carrier phonon scattering and point defect scattering. The maximum dimensionless thermoelectric figure of merit, ZT = 1.04 at 818 K, was obtained with an optimized Te content for Fe0.2Co3.8Sb1 1.5Te0.5 and a carrier concentration of,,J1/ =- 3.0 x 1020 CM-3 at room temperature. Thermal expansion (a = 8.8 x 10-6 K-1), as measured for Fe(0.)2Co(3.8)Sb(12),Te-x , compared well with that of undoped Co4Sb12. A further increase in the thermoelectric figure of merit up to ZT = 1.3 at 820 K was achieved for Fe(0.)2Co(3.8)Sb(12),Te-x , applying severe plastic deformation in terms of a high-pressure torsion process. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Chalcopyrite Cu(In,Al)Se-2 (CIAS) thin films are grown on stainless steel substrate through one-step electrodeposition at room temperature. Indium is partially replaced with aluminum to increase the band gap of CuInSe2 without creating significant change in the original structure. The deposition potential is optimized at -0.8 V (vs. SCE) and annealing of the films is performed in vacuum to remove binary phases present in the as-deposited films. In/Al ratio is varied from 1/9 to 8/2, to find the suitability for solar cell fabrication. For In/Al ratio of less than 8/2, CuAlSe2 phase is formed in the film in addition to the CIAS phase. Depth profile X-ray photoelectron spectroscopy analysis of the CIAS sample prepared with In/Al ratio of 8/2 in the precursor solution confirmed the existence of single phase CIAS throughout the film. This film showed p-type conductivity while the rest of the samples with In/Al ratio less than 8/2 showed n-type conductivity. The band gap of the film varied from 1.06 to 1.45 eV, with variation in deposition potential. Structural, optical, morphological, compositional and electrical characterizations are carried out to establish the suitability of this film for solar cell fabrication. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Stoichiometric tin (II) sulfide (SnS) nano-structures were synthesized on SnS(010)/glass substrates using a simple and low-temperature chemical solution method, and their physical properties were investigated. The as-synthesized SnS nanostructures exhibited orthorhombic crystal structure and most of the nanocrystals are preferentially oriented along the <010> direction. These nanostructures showed p-type electrical conductivity and high electrical resistivity of 93 Omega cm. SnS nanostructures exhibited a direct optical band gap of 1.43 eV. While increasing the surrounding temperature from 20 to 150 degrees C, the electrical resistivity of the structures decreased and exhibited the activation energy of 0.28 eV.
Resumo:
Vertically aligned zinc oxide nanorods (ZnO NRs) were synthesized on kapton flexible sheets using a simple and cost-effective three-step process (electrochemical seeding, annealing under ambient conditions, and chemical solution growth). Scanning electron microscopy studies reveal that ZnO NRs grown on seed-layers, developed by electrochemical deposition at a negative potential of 1.5 V over a duration of 2.5 min and annealed at 200 degrees C for 2 h, consist of uniform morphology and good chemical stoichiometry. Transmission electron microscopy analyses show that the as-grown ZnO NRs have single crystalline hexagonal structure with a preferential growth direction of < 001 >. Highly flexible p-n junction diodes fabricated by using p-type conductive polymer exhibited excellent diode characteristics even under the fold state.
Resumo:
Lead-tin-telluride is a well-known thermoelectric material in the temperature range 350-750 K. Here, this alloy doped with manganese (Pb0.96-yMn0.04SnyTe) was prepared for different amounts of tin. X-ray diffraction showed a decrease of the lattice constant with increasing tin content, which indicated solid solution formation. Microstructural analysis showed a wide distribution of grain sizes from <1 mu m to 10 mm and the presence of a SnTe rich phase. All the transport properties were measured in the range of 300-720 K. The Seebeck coefficient showed that all the samples were p-type indicating holes as dominant carriers in the measurement range. The magnitude increased systematically on reduction of the Sn content due to possible decreasing hole concentration. Electrical conductivity showed the degenerate nature of the samples. Large values of the electrical conductivity could have possibly resulted from a large hole concentration due to a high Sn content and secondly, due to increased mobility by sp-d orbital interaction between the Pb1-ySnyTe sublattice and the Mn2+ ions. High thermal conductivity was observed due to higher electronic contribution, which decreased systematically with decreasing Sn content. The highest zT = 0.82 at 720 K was obtained for the alloy with the lowest Sn content (y = 0.56) due to the optimum doping level.