950 resultados para Oxidation products


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oxidized and chlorinated phospholipids are generated under inflammatory conditions and are increasingly understood to play important roles in diseases involving oxidative stress. MS is a sensitive and informative technique for monitoring phospholipid oxidation that can provide structural information and simultaneously detect a wide variety of oxidation products, including chain-shortened and -chlorinated phospholipids. MSn technologies involve fragmentation of the compounds to yield diagnostic fragment ions and thus assist in identification. Advanced methods such as neutral loss and precursor ion scanning can facilitate the analysis of specific oxidation products in complex biological samples. This is essential for determining the contributions of different phospholipid oxidation products in disease. While many pro-inflammatory signalling effects of oxPLs (oxidized phospholipids) have been reported, it has more recently become clear that they can also have anti-inflammatory effects in conditions such as infection and endotoxaemia. In contrast with free radical-generated oxPLs, the signalling effects of chlorinated lipids are much less well understood, but they appear to demonstrate mainly pro-inflammatory effects. Specific analysis of oxidized and chlorinated lipids and the determination of their molecular effects are crucial to understanding their role in disease pathology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The generation of reactive oxygen species is a central feature of inflammation that results in the oxidation of host phospholipids. Oxidized phospholipids, such as 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine (OxPAPC), have been shown to inhibit signaling induced by bacterial lipopeptide or lipopolysac-charide (LPS), yet the mechanisms responsible for the inhibition of Toll-like receptor (TLR) signaling by OxPAPC remain incompletely understood. Here, we examined the mechanisms by which OxPAPC inhibits TLR signaling induced by diverse ligands in macrophages, smooth muscle cells, and epithelial cells. OxPAPC inhibited tumor necrosis factor- production, IB degradation, p38 MAPK phosphorylation, and NF-B-dependent reporter activation induced by stimulants of TLR2 and TLR4 (Pam3CSK4 and LPS) but not by stimulants of other TLRs (poly(I·C), flagellin, loxoribine, single-stranded RNA, or CpG DNA) in macrophages and HEK-293 cells transfected with respective TLRs and significantly reduced inflammatory responses in mice injected subcutaneously or intraperitoneally with Pam3CSK4. Serum proteins, including CD14 and LPS-binding protein, were identified as key targets for the specificity of TLR inhibition as supplementation with excess serum or recombinant CD14 or LBP reversed TLR2 inhibition by OxPAPC, whereas serum accessory proteins or expression of membrane CD14 potentiated signaling via TLR2 and TLR4 but not other TLRs. Binding experiments and functional assays identified MD2 as a novel additional target of OxPAPC inhibition of LPS signaling. Synthetic phospholipid oxidation products 1-palmitoyl-2-(5-oxovaleryl)-sn-glycero-3-phosphocholine and 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine inhibited TLR2 signaling from 30 µM. Taken together, these results suggest that oxidized phospholipid-mediated inhibition of TLR signaling occurs mainly by competitive interaction with accessory proteins that interact directly with bacterial lipids to promote signaling via TLR2 or TLR4.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Membrane lipid composition is an important correlate of the rate of aging of animals. Dietary methionine restriction (MetR) increases lifespan in rodents. The underlying mechanisms have not been elucidated but could include changes in tissue lipidomes. In this work, we demonstrate that 80% MetR in mice induces marked changes in the brain, spinal cord, and liver lipidomes. Further, at least 50% of the lipids changed are common in the brain and spinal cord but not in the liver, suggesting a nervous system-specific lipidomic profile of MetR. The differentially expressed lipids includes (a) specific phospholipid species, which could reflect adaptive membrane responses, (b) sphingolipids, which could lead to changes in ceramide signaling pathways, and (c) the physiologically redox-relevant ubiquinone 9, indicating adaptations in phase II antioxidant response metabolism. In addition, specific oxidation products derived from cholesterol, phosphatidylcholine, and phosphatidylethanolamine were significantly decreased in the brain, spinal cord, and liver from MetR mice. These results demonstrate the importance of adaptive responses of membrane lipids leading to increased stress resistance as a major mechanistic contributor to the lowered rate of aging in MetR mice. © 2013 American Chemical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Protein lipoxidation refers to the modification by electrophilic lipid oxidation products to form covalent adducts, which for many years has been considered as a deleterious consequence of oxidative stress. Oxidized lipids or phospholipids containing carbonyl moieties react readily with lysine to form Schiff bases; alternatively, oxidation products containing α,β-unsaturated moieties are susceptible to nucleophilic attack by cysteine, histidine or lysine residues to yield Michael adducts, overall corresponding to a large number of possible protein adducts. The most common detection methods for lipoxidized proteins take advantage of the presence of reactive carbonyl groups to add labels, or use antibodies. These methods have limitations in terms of specificity and identification of the modification site. The latter question is satisfactorily addressed by mass spectrometry, which enables the characterization of the adduct structure. This has allowed the identification of lipoxidized proteins in physiological and pathological situations. While in many cases lipoxidation interferes with protein function, causing inhibition of enzymatic activity and increased immunogenicity, there are a small number of cases where lipoxidation results in gain of function or activity. For certain proteins lipoxidation may represent a form of redox signaling, although more work is required to confirm the physiological relevance and mechanisms of such processes. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine. © 2013 Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phosphatidylserine (PS) is preferentially located in the inner leaflet of the cell membrane, and translocation of PS oxidized in fatty acyl chains to the outside of membrane has been reported as signaling to macrophage receptors to clear apoptotic cells. It was recently shown that PS can be oxidized in serine moiety of polar head-group. In the present work, a targeted lipidomic approach was applied to detecting OxPS modified at the polar head-group in keratinocytes that were exposed to the radical generator AAPH. Glycerophosphoacetic acid derivatives (GPAA) were found to be the major oxidation products of OxPS modified at the polar head-group during oxidation induced by AAPH-generated radicals, similarly to previous observations for the oxidation induced by OH radical. The neutral loss scan of 58Da and a novel precursor ion scan of m/z 137.1 (HOPO3CH2COOH) allowed the recognition of GPAA derivatives in the total lipid extracts obtained from HaCaT cells treated with AAPH. The positive identification of serine head group oxidation products in cells under controlled oxidative conditions opens new perspectives and justifies further studies in other cellular environments in order to understand fully the role of PS polar head-group oxidation in cell homeostasis and disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrophilic attack of hypochlorous acid on unsaturated bonds of fatty acyl chains is known to result mostly in chlorinated products that show cytotoxicity to some cell lines and were found in biological systems exposed to HOCl. This study aimed to investigate more deeply the products and the mechanism underlying cytotoxicity of phospholipid-HOCl oxidation products, synthesized by the reaction of HOCl with 1-stearoyl-2-oleoyl-, 1-stearoyl-2-linoleoyl-, and 1-stearoyl-2-arachidonyl-phosphatidylcholine. Phospholipid chlorohydrins were found to be the most abundant among obtained products. HOCl-modified lipids were cytotoxic towards HUVEC-ST (endothelial cells), leading to a decrease of mitochondrial potential and an increase in the number of apoptotic cells. These effects were accompanied by an increase of the level of active caspase-3 and caspase-7, while the caspase-3/-7 inhibitor Ac-DEVD-CHO dramatically decreased the number of apoptotic cells. Phospholipid-HOCl oxidation products were shown to affect cell proliferation by a concentration-dependent cell cycle arrest in the G/G phase and activating redox sensitive p38 kinase. The redox imbalance observed in HUVEC-ST cells exposed to modified phosphatidylcholines was accompanied by an increase in ROS level, and a decrease in glutathione content and antioxidant capacity of cell extracts. © 2014 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Consumers expect organic, free-range and corn-fed chicken to be nutritionally wholesome and have premium flavour characters. Interrelationships between flavour, fatty acids and antioxidants of retailed breasts were explored using simple correlations and chemometrics. Saturated fatty acid C16:0, and n-6 polyunsaturated C20:4 and C22:4 contents were correlated with lipid oxidation products (thiobarbituric acid reactive substances) and in partial least-squares regression (PLS1) with 32 high-resonance gas chromatography (flame ionization) flavour components (r2>0.90), and also linked (r2>0.80) to antioxidants (-tocopherol, glutathione and catalase). A further 10 high-resonance gas chromatography nitrogen phosphorus detector flavour components were correlated (r 2>0.85) with C18:3(n-3) content. Chicken character was correlated with C18:3(n-3), and C18:3(n-6) inversely with oily, off-flavour and lipid oxidation. Sweet, fruity and oily aromas were linked in PLS1 with 13 specific fatty acids (r2>0.6), and bland taste with total summed (six) fatty acid fractions (r2>0.81). Specific antioxidants were correlated with sweet, fruity and chicken aromas, and -tocopherol inversely with lipid oxidation. PLS2 confirmed relationships between fatty acid composition, antioxidants and the subsets of 32 and 10 flavour components. Clear relationships were thus observed between lipid and antioxidant compositions and flavour in chicken breast meat.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The oxidation of low-density lipoprotein (LDL) is thought to contribute to atherogenesis, which is an inflammatory disease involving activation of phagocytic cells. Myeloperoxidase, an enzyme which is able to produce hypochlorous acid (HOCl), is released from these phagocytic cells, and has been found in an active form in atherosclerotic plaques. HOCl can oxidize both the lipid and protein moiety of LDL, and HOCl-modified LDL has been found to be pro-inflammatory, although it is not known which component is responsible for this effect. As HOCl can oxidize lipids to give chlorohydrins, we hypothesized that phospholipid chlorohydrins might have toxic and pro-inflammatory effects. We have formed chlorohydrins from fatty acids (oleic, linoleic and arachidonic acids) and from phospholipids (stearoyl-oleoyl phosphatidylcholine, stearoyl-linoleoyl phosphatidylcholine and stearoyl-arachidonoyl phosphatidylcholine), and investigated various biological effects of these oxidation products. Fatty acid and phospholipid chlorohydrins were found to deplete ATP levels in U937 cells in a concentration-dependent manner, with significant effects observed at concentrations of 25 µM and above. Low concentrations (25 µM) of stearoyl-oleoyl phosphatidylcholine and stearoyl-arachidonoyl phosphatidylcholine chlorohydrins were also found to increase caspase-3 activity. Finally, stearoyl-oleoyl phosphatidylcholine chlorohydrin increased leukocyte adhesion to artery segments isolated from C57Bl/6 mice. These results demonstrate potentially harmful effects of lipid chlorohydrins, and suggest that they may contribute to some of the pro-inflammatory effects that HOCl-modified low density lipoprotein has been found to induce.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The influence of the comonomer content in a series of metallocene-based ethylene-1-octene copolymers (m-LLDPE) on thermo-mechanical, rheological, and thermo-oxidative behaviours during melt processing were examined using a range of characterisation techniques. The amount of branching was calculated from 13C NMR and studies using differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) were employed to determine the effect of short chain branching (SCB, comonomer content) on thermal and mechanical characteristics of the polymer. The effect of melt processing at different temperatures on the thermo-oxidative behaviour of the polymers was investigated by examining the changes in rheological properties, using both melt flow and capillary rheometry, and the evolution of oxidation products during processing using infrared spectroscopy. The results show that the comonomer content and catalyst type greatly affect thermal, mechanical and oxidative behaviour of the polymers. For the metallocene polymer series, it was shown from both DSC and DMA that (i) crystallinity and melting temperatures decreased linearly with comonomer content, (ii) the intensity of the ß-transition increased, and (iii) the position of the tan δmax peak corresponding to the a-transition shifted to lower temperatures, with higher comonomer content. In contrast, a corresponding Ziegler polymer containing the same level of SCB as in one of the m-LLDPE polymers, showed different characteristics due to its more heterogeneous nature: higher elongational viscosity, and a double melting peak with broader intensity that occurred at higher temperature (from DSC endotherm) indicating a much broader short chain branch distribution. The thermo-oxidative behaviour of the polymers after melt processing was similarly influenced by the comonomer content. Rheological characteristics and changes in concentrations of carbonyl and the different unsaturated groups, particularly vinyl, vinylidene and trans-vinylene, during processing of m-LLDPE polymers, showed that polymers with lower levels of SCB gave rise to predominantly crosslinking reactions at all processing temperatures. By contrast, chain scission reactions at higher processing temperatures became more favoured in the higher comonomer-containing polymers. Compared to its metallocene analogue, the Ziegler polymer showed a much higher degree of crosslinking at all temperatures because of the high levels of vinyl unsaturation initially present.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The role of lipoxygenase (lox) in senescence ofAlstroemeria peruviana flowers was investigated using a combination of in vitro assays and chemical profiling of the lipid oxidation products generated. Phospholipids and galactolipids were extensively degraded during senescence in both sepals and petals and the ratio of saturated/unsaturated fatty acids increased. Lox protein levels and enzymatic activity declined markedly after flower opening. Stereochemical analysis of lox products showed that 13-lox was the major activity present in both floral tissues and high levels of 13-keto fatty acids were also synthesized. Lipid hydroperoxides accumulated in sepals, but not in petals, and sepals also had a higher chlorophyll to carotenoid ratio that favors photooxidation of lipids. Loss of membrane semipermeability was coincident for both tissue types and was chronologically separated from lox activity that had declined by over 80% at the onset of electrolyte leakage. Thus, loss of membrane function was not related to lox activity or accumulation of lipid hydroperoxides per se and differs in these respects from other ethylene-insensitive floral tissues representing a novel pattern of flower senescence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phospholipid oxidation by adventitious damage generates a wide variety of products with potentially novel biological activities that can modulate inflammatory processes associated with various diseases. To understand the biological importance of oxidised phospholipids (OxPL) and their potential role as disease biomarkers requires precise information about the abundance of these compounds in cells and tissues. There are many chemiluminescence and spectrophotometric assays available for detecting oxidised phospholipids, but they all have some limitations. Mass spectrometry coupled with liquid chromatography is a powerful and sensitive approach that can provide detailed information about the oxidative lipidome, but challenges still remain. The aim of this work is to develop improved methods for detection of OxPLs by optimisation of chromatographic separation through testing several reverse phase columns and solvent systems, and using targeted mass spectrometry approaches. Initial experiments were carried out using oxidation products generated in vitro to optimise the chromatography separation parameters and mass spectrometry parameters. We have evaluated the chromatographic separation of oxidised phosphatidylcholines (OxPCs) and oxidised phosphatidylethanolamines (OXPEs) using C8, C18 and C30 reverse phase, polystyrene – divinylbenzene based monolithic and mixed – mode hydrophilic interaction (HILIC) columns, interfaced with mass spectrometry. Our results suggest that the monolithic column was best able to separate short chain OxPCs and OxPEs from long chain oxidised and native PCs and PEs. However, variation in charge of polar head groups and extreme diversity of oxidised species make analysis of several classes of OxPLs within one analytical run impractical. We evaluated and optimised the chromatographic separation of OxPLs by serially coupling two columns: HILIC and monolith column that provided us the larger coverage of OxPL species in a single analytical run.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Amazon Basin plays key role in atmospheric chemistry, biodiversity and climate change. In this study we applied nanoelectrospray (nanoESI) ultra-high-resolution mass spectrometry (UHRMS) for the analysis of the organic fraction of PM2.5 aerosol samples collected during dry and wet seasons at a site in central Amazonia receiving background air masses, biomass burning and urban pollution. Comprehensive mass spectral data evaluation methods (e.g. Kendrick mass defect, Van Krevelen diagrams, carbon oxidation state and aromaticity equivalent) were used to identify compound classes and mass distributions of the detected species. Nitrogen- and/or sulfur-containing organic species contributed up to 60 % of the total identified number of formulae. A large number of molecular formulae in organic aerosol (OA) were attributed to later-generation nitrogen- and sulfur-containing oxidation products, suggesting that OA composition is affected by biomass burning and other, potentially anthropogenic, sources. Isoprene-derived organosulfate (IEPOX-OS) was found to be the most dominant ion in most of the analysed samples and strongly followed the concentration trends of the gas-phase anthropogenic tracers confirming its mixed anthropogenic–biogenic origin. The presence of oxidised aromatic and nitro-aromatic compounds in the samples suggested a strong influence from biomass burning especially during the dry period. Aerosol samples from the dry period and under enhanced biomass burning conditions contained a large number of molecules with high carbon oxidation state and an increased number of aromatic compounds compared to that from the wet period. The results of this work demonstrate that the studied site is influenced not only by biogenic emissions from the forest but also by biomass burning and potentially other anthropogenic emissions from the neighbouring urban environments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract : The major objective of our study is to investigate DNA damage induced by soft X-rays (1.5 keV) and low-energy electrons (˂ 30 eV) using a novel irradiation system created by Prof. Sanche’s group. Thin films of double-stranded DNA are deposited on either glass and tantalum substrates and irradiated under standard temperature and pressure surrounded by a N[subscript 2] environment. Base release (cytosine, thymine, adenine and guanine) and base modifications (8-oxo-7,8-dihydro -2’-deoxyguanosine, 5-hydroxymethyl-2’-deoxyuridine, 5-formyl-2’-deoxyuridine, 5,6-dihydrothymidine and 5,6-dihydro-2’-deoxy uridine) are analyzed and quantified by LC-MS/MS. Our results reveal larger damage yields in the sample deposited on tantalum than those on glass. This can be explained by an enhancement of damage due to low-energy electrons, which are emitted from the metal substrate. From a comparison of the yield of products, base release is the major type of damage especially for purine bases, which are 3-fold greater than base modifications. A proposed pathway leading to base release involves the formation of a transient negative ion (TNI) followed by dissociative electron attachment (DEA) at the N-g lycosidic bond. On the other hand, base modification products consist of two major types of chemical modifications, which include thymine methyl oxidation products that likely arises from DEA from the methyl group of thymine, and 5,6-dihydropyrimidine that can involve the initial addition of electrons, H atoms, or hydride ions to the 5,6-pyrimidine double bond.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O stress oxidativo está associado ao envelhecimento e a inúmeras patologias, nomeadamente a doenças neurodegenerativas e cardiovasculares, e a diversos outros fatores. O stress oxidativo leva à oxidação de importantes biomoléculas como os lípidos e, ao contrário da maior parte dos produtos de oxidação de fosfolípidos e ácidos gordos insaturados (PUFAS), os produtos de oxidação de glicosfingolípidos (GSLs) têm sido escassamente estudados. Os glicosfingolípidos são moléculas muito diversificadas estruturalmente e com importantes funções, essencialmente no sistema nervoso central (SNC) onde estão localizados maioritariamente. Deste modo, alterações na estrutura dos GSLs conduzirão a consequente comprometimento das suas funções e ao possível desenvolvimento de patologias. Assim para identificar as modificações oxidativas que ocorrem em glicosfingolípidos e pressupor consequentes efeitos biológicos nas células sob stress oxidativo, prepararamse sistemas modelo biomiméticos com diferentes GSLs os quais foram expostos a radicais hidroxilo gerados sob condições da reação de Fenton (H2O2 e Fe2+) e as reações foram monitorizadas por diferentes metodologia utilizando a espectrometria de massa. Os resultados obtidos com este estudo permitiram-nos identificar vários produtos de oxidação produzidos durante a oxidação desta classe de lípidos. Os produtos de oxidação observados em comum, em todos os GSLs estudados (C16:0GalCer, C24:1GalCer, C24:1LacCer e GM1) foram as suas correspondentes ceramidas. Estas atuam como agentes pro-apoptóticos e podem in vivo promover a neurodegeneração nas células sob stress oxidativo. Também foi possível observar produtos com inserção de oxigénio junto às duplas ligações ou na cadeia de esfingosina (no caso do GM1) ou na cadeia de ácido gordo monoinsaturada (no caso da C24:1GalCer, C24:1LacCer), corroborando o facto de que ácidos gordos saturados não são susceptíveis à oxidação por radicais. Interessantemente em ambos os GSLs de cadeias glicosiladas compostas com mais de um açúcar (C24:1LacCer e GM1) observou-se a despolimerização oxidativa da porção glicosilada por quebra das correspondentes ligações glicosídicas. Esta degradação leva à formação de GlcCer no caso de oxidação de LacCer ou na formação de outros gangliósidos (GM2, GM3, asialoGM1 e asialoGM2) e glicolípidos (LacCer e GlcCer), no caso de oxidação de GM1. A formação por via radicalar não enzimática destes GSLs leva a distúrbios no perfil lipídico. Previamente, em certas doenças, foram observadas variações na concentração do perfil de gangliósidos e de ceramidas. Estes dados permitem sugerir que em células em condições de stress oxidativo, a acumulação de gangliósidos mais simples e ceramidas poderá ter uma contribuição de produtos da degradação oxidativa dos gangliósidos e GSLs mais complexos. Este trabalho contribui assim para uma melhor compreensão das modificações estruturais que ocorrem em alguns glicosfingolípidos em condições de stress oxidativo. Os produtos de oxidação aqui identificados suportam a sua possível futura deteção em sistemas biológicos.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O óleo de pescado é caracterizado por ser uma fonte rica de ácidos graxos poliinsaturados ω-3, desde modo a sua oxidação lipídica se torna mais favorável quando comparado com outros óleos de origem vegetal. O objetivo do presente trabalho foi a otimização da etapa de branqueamento através da metodologia de superfície de resposta, sendo utilizado misturas de carvão ativado e terra ativada (Tonsil) para a remoção da cor e dos produtos de oxidação, procurando-se preservar o conteúdo total de carotenóides no óleo de carpa. O óleo bruto de carpa (Cyprinus carpio L.) para a realização do trabalho foi obtido a partir da realização de ensilagem ácida, passando posteriormente pelas etapas de refino: degomagem, neutralização, lavagem, secagem e branqueamento. A otimização da etapa de branqueamento foi realizada através de um planejamento fatorial composto central, com os fatores de estudo: a quantidade de adsorvente (Ads) e a quantidade de carvão ativado (Ca), sendo consideradas como respostas o conteúdo total de carotenóides e o valor de TBA. Na melhor condição do branqueamento do óleo de carpa foi realizado um estudo cinético, e para o cálculo das constantes cinéticas foram utilizados os modelos de Brimberg modificado e de Langmuir-Hinshelwood, A condição ótima do branqueamento foi com 2% de adsorvente e 10% de carvão ativado, onde ocorreram menores perdas de carotenóides (44,40%), com redução da cor escura presente no óleo de (85,62%) e redução do valor de TBA (73,10%), obtendo-se um óleo branqueado de carpa com qualidade oxidativa e melhor aspecto em relação à cor. Os dois modelos cinéticos representaram de forma satisfatória os dados experimentais do branqueamento do óleo de carpa, pelos altos coeficientes de determinação e baixos erros médios relativos apresentados. Foi possível observar que ocorreu uma rápida adsorção dos pigmentos carotenóides, e após 30 min a adsorção foi menos eficiente. Nos óleos bruto e branqueado de vísceras de carpa não foi identificada diferença significativa entre as concentrações de ácidos graxos, demonstrando que as etapas de refino utilizadas não alteraram o perfil de ácidos graxos do óleo bruto.