902 resultados para Orthographic projection
Resumo:
This paper introduces and studies the notion of CLP projection for Constraint Handling Rules (CHR). The CLP projection consists of a naive translation of CHR programs into Constraint Logic Programs (CLP). We show that the CLP projection provides a safe operational and declarative approximation for CHR programs. We demónstrate moreover that a confluent CHR program has a least model, which is precisely equal to the least model of its CLP projection (closing henee a ten year-old conjecture by Abdenader et al.). Finally, we illustrate how the notion of CLP projection can be used in practice to apply CLP analyzers to CHR. In particular, we show results from applying AProVE to prove termination, and CiaoPP to infer both complexity upper bounds and types for CHR programs.
Resumo:
Extreme events of maximum and minimum temperatures are a main hazard for agricultural production in Iberian Peninsula. For this purpose, in this study we analyze projections of their evolution that could be valid for the next decade, represented in this study by the 30-year period 2004-2034 (target period). For this purpose two kinds of data were used in this study: 1) observations from the station network of AEMET (Spanish National Meteorological Agency) for five Spanish locations, and 2) simulated data at a resolution of 50 50 km horizontal grid derived from the outputs of twelve Regional Climate Models (RCMs) taken from project ENSEMBLES (van der Linden and Mitchell, 2009), with a bias correction (Dosio and Paruolo, 2011; Dosio et al., 2012) regarding the observational dataset Spain02 (Herrera et al., 2012). To validate the simulated climate, the available period of observations was compared to a baseline period (1964-1994) of simulated climate for all locations. Then, to analyze the changes for the present/very next future, probability of extreme temperature events for 2004-2034 were compared to that of the baseline period. Although only minor changes are expected, small variations in variability may have a significant impact in crop performance.
Resumo:
Efficient motility of the eukaryotic flagellum requires precise temporal and spatial control of its constituent dynein motors. The central pair and its associated structures have been implicated as important members of a signal transduction cascade that ultimately regulates dynein arm activity. To identify central pair components involved in this process, we characterized a Chlamydomonas motility mutant (pf6-2) obtained by insertional mutagenesis. pf6-2 flagella twitch ineffectively and lack the 1a projection on the C1 microtubule of the central pair. Transformation with constructs containing a full-length, wild-type copy of the PF6 gene rescues the functional, structural, and biochemical defects associated with the pf6 mutation. Sequence analysis indicates that the PF6 gene encodes a large polypeptide that contains numerous alanine-rich, proline-rich, and basic domains and has limited homology to an expressed sequence tag derived from a human testis cDNA library. Biochemical analysis of an epitope-tagged PF6 construct demonstrates that the PF6 polypeptide is an axonemal component that cosediments at 12.6S with several other polypeptides. The PF6 protein appears to be an essential component required for assembly of some of these polypeptides into the C1-1a projection.
Resumo:
The hippocampus and septum play central roles in one of the most important spheres of brain function: learning and memory. Although their topographic connections have been known for two decades and topography may be critical for cognitive functions, the basis for hippocamposeptal topographic projection is unknown. We now report for the first time that Elf-1, a membrane-bound eph family ligand, is a candidate molecular tag for the genesis of the hippocamposeptal topographic projection. Elf-1 is expressed in an increasing gradient from dorsal to ventral septum. Furthermore, Elf-1 selectively allows growth of neurites from topographically appropriate lateral hippocampal neurons, while inhibiting neurite outgrowth by medial hippocampal neurons. Complementary to the expression of Elf-1, an eph family receptor, Bsk, is expressed in the hippocampus in a lateral to medial gradient, consistent with a function as a receptor for Elf-1. Further, Elf-1 specifically bound Bsk, eliciting tyrosine kinase activity. We conclude that the Elf-1/Bsk ligand-receptor pair exhibits traits of a chemoaffinity system for the organization of hippocamposeptal topographic projections.
Resumo:
Rhodopsin is the G protein-coupled receptor that upon light activation triggers the visual transduction cascade. Rod cell outer segment disc membranes were isolated from dark-adapted frog retinas and were extracted with Tween detergents to obtain two-dimensional rhodopsin crystals for electron crystallography. When Tween 80 was used, tubular structures with a p2 lattice (a = 32 A, b = 83 A, gamma = 91 degrees) were formed. The use of a Tween 80/Tween 20 mixture favored the formation of larger p22(1)2(1) lattices (a = 40 A, b = 146 A, gamma = 90 degrees). Micrographs from frozen hydrated frog rhodopsin crystals were processed, and projection structures to 7-A resolution for the p22(1)2(1) form and to 6-A resolution for the p2 form were calculated. The maps of frog rhodopsin in both crystal forms are very similar to the 9-A map obtained previously for bovine rhodopsin and show that the arrangement of the helices is the same. In a tentative topographic model, helices 4, 6, and 7 are nearly perpendicular to the plane of the membrane. In the higher-resolution projection maps of frog rhodopsin, helix 5 looks more tilted than it appeared previously. The quality of the two frog rhodopsin crystals suggests that they would be suitable to obtain a three-dimensional structure in which all helices would be resolved.
Resumo:
How are long-range axonal projections from the cerebral cortex orchestrated during development? By using both passively and actively transported axonal tracers in fetal and postnatal ferrets, we have analyzed the development of projections from the cortex to a number of thalamic nuclei. We report that the projections of a cortical area to its corresponding thalamic nuclei follow highly cell-specific programs of development. Axons from cells in the deepest layers of the cerebral cortex (layer 6 and superficial subplate neurons) appear to grow very slowly and be delayed for several weeks in the cerebral white matter, reaching the thalamus over a protracted period. Neurons of layer 5, on the other hand, develop their projections much faster; despite being born after the neurons of deeper layers, layer 5 neurons are the first to extend their axons out of the cortical hemisphere and innervate the thalamus. Layer 5 projections are massive in the first postnatal weeks but may become partly eliminated later in development, being overtaken in number by layer 6 cells that constitute the major corticothalamic projection by adulthood. Layer 5 projections are area-specific from the outset and arise as collateral branches of axons directed to the brainstem and spinal cord. Our findings show that the early development of corticofugal connections is determined not by the sequence of cortical neurogenesis but by developmental programs specific for each type of projection neuron. In addition, they demonstrate that in most thalamic nuclei, layer 5 neurons (and not subplate or layer 6 neurons) establish the first descending projections from the cerebral cortex.
Resumo:
This paper proves that the real projection of each simple zero of any partial sum of the Riemann zeta function ζn(s):=∑nk=11ks,n>2 , is an accumulation point of the set {Res : ζ n (s) = 0}.
The 2012 Ageing report: Underlying assumptions and projection methodologies. European Economy 4/2011
Resumo:
"12th edition."--Dust jacket.
Resumo:
Cover title.
Resumo:
"May 1980."
Resumo:
"Speech notes only, does not reflect NOS policy." -- p. i.