908 resultados para Order winners
Resumo:
Bipedal gaits have been classified on the basis of the group symmetry of the minimal network of identical differential equations (alias cells) required to model them. Primary bipedal gaits (e.g., walk, run) are characterized by dihedral symmetry, whereas secondary bipedal gaits (e.g., gallop-walk, gallop- run) are characterized by a lower, cyclic symmetry. This fact has been used in tests of human odometry (e.g., Turvey et al. in P Roy Soc Lond B Biol 276:4309–4314, 2009, J Exp Psychol Hum Percept Perform 38:1014–1025, 2012). Results suggest that when distance is measured and reported by gaits from the same symmetry class, primary and secondary gaits are comparable. Switching symmetry classes at report compresses (primary to secondary) or inflates (secondary to primary) measured distance, with the compression and inflation equal in magnitude. The present research (a) extends these findings from overground locomotion to treadmill locomotion and (b) assesses a dynamics of sequentially coupled measure and report phases, with relative velocity as an order parameter, or equilibrium state, and difference in symmetry class as an imperfection parameter, or detuning, of those dynamics. The results suggest that the symmetries and dynamics of distance measurement by the human odometer are the same whether the odometer is in motion relative to a stationary ground or stationary relative to a moving ground.
Resumo:
We study the peculiar dynamical features of a fractional derivative of complex-order network. The network is composed of two unidirectional rings of cells, coupled through a "buffer" cell. The network has a Z3 × Z5 cyclic symmetry group. The complex derivative Dα±jβ, with α, β ∈ R+ is a generalization of the concept of integer order derivative, where α = 1, β = 0. Each cell is modeled by the Chen oscillator. Numerical simulations of the coupled cell system associated with the network expose patterns such as equilibria, periodic orbits, relaxation oscillations, quasiperiodic motion, and chaos, in one or in two rings of cells. In addition, fixing β = 0.8, we perceive differences in the qualitative behavior of the system, as the parameter c ∈ [13, 24] of the Chen oscillator and/or the real part of the fractional derivative, α ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, are varied. Some patterns produced by the coupled system are constrained by the network architecture, but other features are only understood in the light of the internal dynamics of each cell, in this case, the Chen oscillator. What is more important, architecture and/or internal dynamics?
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia e Gestão Industrial
Resumo:
In the recent past, hardly anyone could predict this course of GIS development. GIS is moving from desktop to cloud. Web 2.0 enabled people to input data into web. These data are becoming increasingly geolocated. Big amounts of data formed something that is called "Big Data". Scientists still don't know how to deal with it completely. Different Data Mining tools are used for trying to extract some useful information from this Big Data. In our study, we also deal with one part of these data - User Generated Geographic Content (UGGC). The Panoramio initiative allows people to upload photos and describe them with tags. These photos are geolocated, which means that they have exact location on the Earth's surface according to a certain spatial reference system. By using Data Mining tools, we are trying to answer if it is possible to extract land use information from Panoramio photo tags. Also, we tried to answer to what extent this information could be accurate. At the end, we compared different Data Mining methods in order to distinguish which one has the most suited performances for this kind of data, which is text. Our answers are quite encouraging. With more than 70% of accuracy, we proved that extracting land use information is possible to some extent. Also, we found Memory Based Reasoning (MBR) method the most suitable method for this kind of data in all cases.
Resumo:
Field Lab Entrepreneurial Innovative Ventures
Resumo:
Despite the extensive literature in finding new models to replace the Markowitz model or trying to increase the accuracy of its input estimations, there is less studies about the impact on the results of using different optimization algorithms. This paper aims to add some research to this field by comparing the performance of two optimization algorithms in drawing the Markowitz Efficient Frontier and in real world investment strategies. Second order cone programming is a faster algorithm, appears to be more efficient, but is impossible to assert which algorithm is better. Quadratic Programming often shows superior performance in real investment strategies.
Resumo:
Branding Lab
Resumo:
This work project explores how a male luxury (fashion) brand (subsidiary) that is associated with a luxury car brand (parent company) should develop its communication strategy in order to increase awareness in Europe. For this purpose a quantitative research was conducted. The aim was to find out whether the company in question had low brand awareness among European luxury consumers. Hereafter, a qualitative research revealed important insights in regard to luxury communication among male luxury consumers. Both the results of the research and the recommendations of luxury experts laid the foundation for the development of a solution-oriented communication strategy. The result of the analysis crystallizes the importance of the shared heritage and the synergistic effects, of which the subsidiary should make vast use when communicating.
Resumo:
A new very high-order finite volume method to solve problems with harmonic and biharmonic operators for one- dimensional geometries is proposed. The main ingredient is polynomial reconstruction based on local interpolations of mean values providing accurate approximations of the solution up to the sixth-order accuracy. First developed with the harmonic operator, an extension for the biharmonic operator is obtained, which allows designing a very high-order finite volume scheme where the solution is obtained by solving a matrix-free problem. An application in elasticity coupling the two operators is presented. We consider a beam subject to a combination of tensile and bending loads, where the main goal is the stress critical point determination for an intramedullary nail.
Resumo:
Preprint submitted to International Journal of Solids and Structures. ISSN 0020-7683
Resumo:
Many of our everyday tasks require the control of the serial order and the timing of component actions. Using the dynamic neural field (DNF) framework, we address the learning of representations that support the performance of precisely time action sequences. In continuation of previous modeling work and robotics implementations, we ask specifically the question how feedback about executed actions might be used by the learning system to fine tune a joint memory representation of the ordinal and the temporal structure which has been initially acquired by observation. The perceptual memory is represented by a self-stabilized, multi-bump activity pattern of neurons encoding instances of a sensory event (e.g., color, position or pitch) which guides sequence learning. The strength of the population representation of each event is a function of elapsed time since sequence onset. We propose and test in simulations a simple learning rule that detects a mismatch between the expected and realized timing of events and adapts the activation strengths in order to compensate for the movement time needed to achieve the desired effect. The simulation results show that the effector-specific memory representation can be robustly recalled. We discuss the impact of the fast, activation-based learning that the DNF framework provides for robotics applications.
Resumo:
In this paper, we propose an extension of the firefly algorithm (FA) to multi-objective optimization. FA is a swarm intelligence optimization algorithm inspired by the flashing behavior of fireflies at night that is capable of computing global solutions to continuous optimization problems. Our proposal relies on a fitness assignment scheme that gives lower fitness values to the positions of fireflies that correspond to non-dominated points with smaller aggregation of objective function distances to the minimum values. Furthermore, FA randomness is based on the spread metric to reduce the gaps between consecutive non-dominated solutions. The obtained results from the preliminary computational experiments show that our proposal gives a dense and well distributed approximated Pareto front with a large number of points.
Resumo:
Correlations between the elliptic or triangular flow coefficients vm (m=2 or 3) and other flow harmonics vn (n=2 to 5) are measured using sNN−−−−√=2.76 TeV Pb+Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated lumonisity of 7 μb−1. The vm-vn correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, v3 is found to be anticorrelated with v2 and this anticorrelation is consistent with similar anticorrelations between the corresponding eccentricities ϵ2 and ϵ3. On the other hand, it is observed that v4 increases strongly with v2, and v5 increases strongly with both v2 and v3. The trend and strength of the vm-vn correlations for n=4 and 5 are found to disagree with ϵm-ϵn correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to vn and a nonlinear term that is a function of v22 or of v2v3, as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to v4 and v5 are found to be consistent with previously measured event-plane correlations.