985 resultados para Optimum grazing pressure
Resumo:
Background: Up to 1% of adults will suffer from leg ulceration at some time. The majority of leg ulcers are venous in origin and are caused by high pressure in the veins due to blockage or weakness of the valves in the veins of the leg. Prevention and treatment of venous ulcers is aimed at reducing the pressure either by removing / repairing the veins, or by applying compression bandages / stockings to reduce the pressure in the veins. The vast majority of venous ulcers are healed using compression bandages. Once healed they often recur and so it is customary to continue applying compression in the form of bandages, tights, stockings or socks in order to prevent recurrence. Compression bandages or hosiery (tights, stockings, socks) are often applied for ulcer prevention. Objectives To assess the effects of compression hosiery (socks, stockings, tights) or bandages in preventing the recurrence of venous ulcers. To determine whether there is an optimum pressure/type of compression to prevent recurrence of venous ulcers. Search methods The searches for the review were first undertaken in 2000. For this update we searched the Cochrane Wounds Group Specialised Register (October 2007), The Cochrane Central Register of Controlled Trials (CENTRAL) - The Cochrane Library 2007 Issue 3, Ovid MEDLINE - 1950 to September Week 4 2007, Ovid EMBASE - 1980 to 2007 Week 40 and Ovid CINAHL - 1982 to October Week 1 2007. Selection criteria Randomised controlled trials evaluating compression bandages or hosiery for preventing venous leg ulcers. Data collection and analysis Data extraction and assessment of study quality were undertaken by two authors independently. Results No trials compared recurrence rates with and without compression. One trial (300 patients) compared high (UK Class 3) compression hosiery with moderate (UK Class 2) compression hosiery. A intention to treat analysis found no significant reduction in recurrence at five years follow up associated with high compression hosiery compared with moderate compression hosiery (relative risk of recurrence 0.82, 95% confidence interval 0.61 to 1.12). This analysis would tend to underestimate the effectiveness of the high compression hosiery because a significant proportion of people changed from high compression to medium compression hosiery. Compliance rates were significantly higher with medium compression than with high compression hosiery. One trial (166 patients) found no statistically significant difference in recurrence between two types of medium (UK Class 2) compression hosiery (relative risk of recurrence with Medi was 0.74, 95% confidence interval 0.45 to 1.2). Both trials reported that not wearing compression hosiery was strongly associated with ulcer recurrence and this is circumstantial evidence that compression reduces ulcer recurrence. No trials were found which evaluated compression bandages for preventing ulcer recurrence. Authors' conclusions No trials compared compression with vs no compression for prevention of ulcer recurrence. Not wearing compression was associated with recurrence in both studies identified in this review. This is circumstantial evidence of the benefit of compression in reducing recurrence. Recurrence rates may be lower in high compression hosiery than in medium compression hosiery and therefore patients should be offered the strongest compression with which they can comply. Further trials are needed to determine the effectiveness of hosiery prescribed in other settings, i.e. in the UK community, in countries other than the UK.
Resumo:
Objectives: To assess the validity of the Waterlow screening tool in a cohort of internal medicine patients and to identify factors contributing to pressure injury. Design: Longitudinal cohort study Setting: A tertiary hospital in Brisbane, Australia Participants: 274 patients admitted through the Emergency Department or outpatient clinics and expected to remain in hospital for at least three days were included in the study. The mean age was 65.3 years. Interventions: Patients were screened on admission using the Waterlow screening tool. Every second day, their pressure ulcer status was monitored and recorded. Main outcome measures: Pressure ulcer incidence Results: Fifteen participants (5.5%) had an existing pressure ulcer and a further 12 (4.4%) developed a pressure ulcer during their hospital stay. Sensitivity of the Waterlow scale was 0.67, (95% CI: 0.35 to 0.88); specificity 0.79, (95% CI: 0.73 to 0.85); PPV 0.13, (95% CI: 0.07 to 0.24); NPV 0.98, (95% CI: 0.94 to 0.99). Conclusion: This study provides further evidence of the poor predictive validity of the Waterlow scale. A suitably powered randomised controlled trial is urgently needed to provide definitive evidence about the usefulness of the Waterlow scale compared with other screening tools and with clinical judgement.
Resumo:
Experts in injection molding often refer to previous solutions to find a mold design similar to the current mold and use previous successful molding process parameters with intuitive adjustment and modification as a start for the new molding application. This approach saves a substantial amount of time and cost in experimental based corrective actions which are required in order to reach optimum molding conditions. A Case-Based Reasoning (CBR) System can perform the same task by retrieving a similar case which is applied to the new case from the case library and uses the modification rules to adapt a solution to the new case. Therefore, a CBR System can simulate human e~pertise in injection molding process design. This research is aimed at developing an interactive Hybrid Expert System to reduce expert dependency needed on the production floor. The Hybrid Expert System (HES) is comprised of CBR, flow analysis, post-processor and trouble shooting systems. The HES can provide the first set of operating parameters in order to achieve moldability condition and producing moldings free of stress cracks and warpage. In this work C++ programming language is used to implement the expert system. The Case-Based Reasoning sub-system is constructed to derive the optimum magnitude of process parameters in the cavity. Toward this end the Flow Analysis sub-system is employed to calculate the pressure drop and temperature difference in the feed system to determine the required magnitude of parameters at the nozzle. The Post-Processor is implemented to convert the molding parameters to machine setting parameters. The parameters designed by HES are implemented using the injection molding machine. In the presence of any molding defect, a trouble shooting subsystem can determine which combination of process parameters must be changed iii during the process to deal with possible variations. Constraints in relation to the application of this HES are as follows. - flow length (L) constraint: 40 mm < L < I 00 mm, - flow thickness (Th) constraint: -flow type: - material types: I mm < Th < 4 mm, unidirectional flow, High Impact Polystyrene (HIPS) and Acrylic. In order to test the HES, experiments were conducted and satisfactory results were obtained.
Resumo:
Shell structures find use in many fields of engineering, notably structural, mechanical, aerospace and nuclear-reactor disciplines. Axisymmetric shell structures are used as dome type of roofs, hyperbolic cooling towers, silos for storage of grain, oil and industrial chemicals and water tanks. Despite their thin walls, strength is derived due to the curvature. The generally high strength-to-weight ratio of the shell form, combined with its inherent stiffness, has formed the basis of this vast application. With the advent in computation technology, the finite element method and optimisation techniques, structural engineers have extremely versatile tools for the optimum design of such structures. Optimisation of shell structures can result not only in improved designs, but also in a large saving of material. The finite element method being a general numerical procedure that could be used to treat any shell problem to any desired degree of accuracy, requires several runs in order to obtain a complete picture of the effect of one parameter on the shell structure. This redesign I re-analysis cycle has been achieved via structural optimisation in the present research, and MSC/NASTRAN (a commercially available finite element code) has been used in this context for volume optimisation of axisymmetric shell structures under axisymmetric and non-axisymmetric loading conditions. The parametric study of different axisymmetric shell structures has revealed that the hyperbolic shape is the most economical solution of shells of revolution. To establish this, axisymmetric loading; self-weight and hydrostatic pressure, and non-axisymmetric loading; wind pressure and earthquake dynamic forces have been modelled on graphical pre and post processor (PATRAN) and analysis has been performed on two finite element codes (ABAQUS and NASTRAN), numerical model verification studies are performed, and optimum material volume required in the walls of cylindrical, conical, parabolic and hyperbolic forms of axisymmetric shell structures are evaluated and reviewed. Free vibration and transient earthquake analysis of hyperbolic shells have been performed once it was established that hyperbolic shape is the most economical under all possible loading conditions. Effect of important parameters of hyperbolic shell structures; shell wall thickness, height and curvature, have been evaluated and empirical relationships have been developed to estimate an approximate value of the lowest (first) natural frequency of vibration. The outcome of this thesis has been the generation of new research information on performance characteristics of axisymmetric shell structures that will facilitate improved designs of shells with better choice of shapes and enhanced levels of economy and performance. Key words; Axisymmetric shell structures, Finite element analysis, Volume Optimisation_ Free vibration_ Transient response.
Resumo:
Changes in grassland management intended to increase productivity can lead to sequestration of substantial amounts of atmospheric C in soils. Management-intensive grazing (MiG) can increase forage production in mesic pastures, but potential impacts on soil C have not been evaluated. We sampled four pastures (to 50 cm depth) in Virginia, USA, under MiG and neighboring pastures that were extensively grazed or bayed to evaluate impacts of grazing management on total soil organic C and N pools, and soil C fractions. Total organic soil C averaged 8.4 Mg C ha(-1) (22%) greater under MiG; differences were significant at three of the four sites examined while total soil N was greater for two sites. Surface (0-10 cm) particulate organic matter (POM) C increased at two sites; POM C for the entire depth increment (0-50 cm) did not differ significantly between grazing treatments at any of the sites. Mineral-associated C was related to silt plus clay content and tended to be greater under MiG. Neither soil C:N ratios, POM C, or POM C:total C ratios were accurate indicators of differences in total soil C between grazing treatments, though differences in total soil C between treatments attributable to changes in POM C (43%) were larger than expected based on POM C as a percentage of total C (24.5%). Soil C sequestration rates, estimated by calculating total organic soil C differences between treatments (assuming they arose from changing grazing management and can be achieved elsewhere) and dividing by duration of treatment, averaged 0.41 Mg C ha(-1) year(-1) across the four sites.
Resumo:
With increasing pressure to deliver environmentally friendly and socially responsible highway infrastructure projects, stakeholders are also putting significant focus on the early identification of financial viability and outcomes for these projects. Infrastructure development typically requires major capital input, which may cause serious financial constraints for investors. The push for sustainability has added new dimensions to the evaluation of highway projects, particularly on the cost front. Comprehensive analysis of the cost implications of implementing place sustainable measures in highway infrastructure throughout its lifespan is highly desirable and will become an essential part of the highway development process and a primary concern for decision makers. This paper discusses an ongoing research which seeks to identify cost elements and issues related to sustainable measures for highway infrastructure projects. Through life-cycle costing analysis (LCCA), financial implications of pursuing sustainability, which are highly concerned by the construction stakeholders, have been assessed to aid the decision making when contemplating the design, development and operation of highway infrastructure. An extensive literature review and evaluation of project reports from previous Australian highway projects was first conducted to reveal all potential cost elements. This provided the foundation for a questionnaire survey, which helped identify those specific issues and related costs that project stakeholders consider to be most critical in the Australian industry context. Through the survey, three key stakeholders in highway infrastructure development, namely consultants, contractors and government agencies, provided their views on the specific selection and priority ranking of the various categories. Findings of the survey are being integrated into proven LCCA models for further enhancement. A new LCCA model will be developed to assist the stakeholders to evaluate costs and investment decisions and reach optimum balance between financial viability and sustainability deliverables.
Resumo:
A statistical modeling method to accurately determine combustion chamber resonance is proposed and demonstrated. This method utilises Markov-chain Monte Carlo (MCMC) through the use of the Metropolis-Hastings (MH) algorithm to yield a probability density function for the combustion chamber frequency and find the best estimate of the resonant frequency, along with uncertainty. The accurate determination of combustion chamber resonance is then used to investigate various engine phenomena, with appropriate uncertainty, for a range of engine cycles. It is shown that, when operating on various ethanol/diesel fuel combinations, a 20% substitution yields the least amount of inter-cycle variability, in relation to combustion chamber resonance.
Resumo:
A one-dimensional pressure filtration model that can be used to predict the behaviour of bagasse pulp has been developed and verified in this study.The dynamic filtration model uses steady state compressibility parameters determined experimentally by uniaxial loading. The compressibility parameters M and N for depithed bagasse pulp were determined to be in the ranges 3000–8000kPa and 2.5–3.0 units, respectively. The model also incorporates experimentally determined steady state permeability data from separate experiments to predict the pulp concentration and fibre pressure throughout a pulp mat during dynamic filtration. Under steady state conditions, a variable Kozeny factor required different values for the permeability parameters when compared to a constant Kozeny factor. The specific surface area was 25–30% lower and the swelling factor was 20–25% higher when a variable Kozeny factor was used. Excellent agreement between experimental data and the dynamic filtration model was achieved when a variable Kozeny factor was used.
Resumo:
This study investigated, validated, and applied the optimum conditions for a modified microwave assisted digestion method for subsequent ICP-MS determination of mercury, cadmium, and lead in two matrices relevant to water quality, that is, sediment and fish. Three different combinations of power, pressure, and time conditions for microwave-assisted digestion were tested, using two certified reference materials representing the two matrices, to determine the optimum set of conditions. Validation of the optimized method indicated better recovery of the studied metals compared to standard methods. The validated method was applied to sediment and fish samples collected from Agusan River and one of its tributaries, located in Eastern Mindanao, Philippines. The metal concentrations in sediment ranged from 2.85 to 341.06 mg/kg for Hg, 0.05 to 44.46 mg/kg for Cd and 2.20 to 1256.16 mg/kg for Pb. The results indicate that the concentrations of these metals in the sediments rapidly decrease with distance downstream from sites of contamination. In the selected fish species, the metals were detected but at levels that are considered safe for human consumption, with concentrations of 2.14 to 6.82 μg/kg for Hg, 0.035 to 0.068 μg/kg for Cd, and 0.019 to 0.529 μg/kg for Pb.
Resumo:
Adequate blood supply and sufficient mechanical stability are necessary for timely fracture healing. Damage to vessels impairs blood supply; hindering the transport of oxygen which is an essential metabolite for cells involved in repair. The degree of mechanical stability determines the mechanical conditions in the healing tissues. The mechanical conditions can influence tissue differentiation and may also inhibit revascularization. Knowledge of the actual conditions in a healing fracture in vivo is extremely limited. This study aimed to quantify the pressure, oxygen tension and temperature in the external callus during the early phase of bone healing. Six Merino-mix sheep underwent a tibial osteotomy. The tibia was stabilized with a standard mono-lateral external fixator. A multi-parameter catheter was placed adjacent to the osteotomy gap on the medial aspect of the tibia. Measurements of oxygen tension and temperature were performed for ten days post-op. Measurements of pressure were performed during gait on days three and seven. The ground reaction force and the interfragmentary movements were measured simultaneously. The maximum pressure during gait increased (p=0.028) from three (41.3 [29.2-44.1] mm Hg) to seven days (71.8 [61.8-84.8] mm Hg). During the same interval, there was no change (p=0.92) in the peak ground reaction force or in the interfragmentary movement (compression: p=0.59 and axial rotation: p=0.11). Oxygen tension in the haematoma (74.1 mm Hg [68.6-78.5]) was initially high post-op and decreased steadily over the first five days. The temperature increased over the first four days before reaching a plateau at approximately 38.5 degrees C on day four. This study is the first to report pressure, oxygen tension and temperature in the early callus tissues. The magnitude of pressure increased even though weight bearing and IFM remained unchanged. Oxygen tensions were initially high in the haematoma and fell gradually with a low oxygen environment first established after four to five days. This study illustrates that in bone healing the local environment for cells may not be considered constant with regard to oxygen tension, pressure and temperature.
Resumo:
The results of pressure-tuning Raman spectroscopic, X-ray powder diffraction and solid-state 13C-NMR studies of selected dicarboxylate anions intercalated in a Mg-Al layered double hydroxide (talcite) lattice are reported. The pressure dependences of the vibrational modes are linear for pressures up to 4.6 GPa indicating that no phase transitions occur. The interlayer spacings show that the oxalate, malonate and succinate dianions are oriented perpendicular to the layers, but the glutarate and adipate are tilted. The solid-state 13C-NMR spectra of these materials show full chemical shift anisotropy and, therefore, the anions are not mobile at room temperature.