912 resultados para Optimization methods


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The past years have seen a great interest in the use of frequency selective surfaces (FSS), as spatial filters, in many microwave applications. Among these, we highlight applications in telecommunication systems (such as satellite communications and radar), high gain antennas (combined with planar antennas) and (home and industrial) microwave ovens. The FSS is usually composed of two-dimensional periodic arrays, with equally spaced elements, which may be metallic patches (printed on dielectric substrates) or aperture (holes in thin metal surfaces). Using periodic arrays, the FSS have been able to meet the demands of the telecommunications industry. However, new demands are finding technological limitations. In this context, adverse filtering requirements have forced designers to use FSS optimization methods to find specific formats of FSS elements. Another alternative that has been used to increase the selectivity of the FSS is the cascaded FSS, a simple technique that has as main drawback the increased dimensions of the structure, as well as its weight. This work proposes the development of a new class of selective surfaces frequency (FSS) composed of quasi-periodic (or non-periodic) arrangements. The proposed FSS have no array periodicity, in relation with the spatial position of their elements. The frequency responses of these structures were simulated using commercial softwares that implement full-wave methods. For the purpose of validation of this study, FSS prototypes were built and measured, being possible to observe a good agreement between simulated and measured results. The main conclusions of this work are presented, as well as suggestions for future works.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Launching centers are designed for scientific and commercial activities with aerospace vehicles. Rockets Tracking Systems (RTS) are part of the infrastructure of these centers and they are responsible for collecting and processing the data trajectory of vehicles. Generally, Parabolic Reflector Radars (PRRs) are used in RTS. However, it is possible to use radars with antenna arrays, or Phased Arrays (PAs), so called Phased Arrays Radars (PARs). Thus, the excitation signal of each radiating element of the array can be adjusted to perform electronic control of the radiation pattern in order to improve functionality and maintenance of the system. Therefore, in the implementation and reuse projects of PARs, modeling is subject to various combinations of excitation signals, producing a complex optimization problem due to the large number of available solutions. In this case, it is possible to use offline optimization methods, such as Genetic Algorithms (GAs), to calculate the problem solutions, which are stored for online applications. Hence, the Genetic Algorithm with Maximum-Minimum Crossover (GAMMC) optimization method was used to develop the GAMMC-P algorithm that optimizes the modeling step of radiation pattern control from planar PAs. Compared with a conventional crossover GA, the GAMMC has a different approach from the conventional one, because it performs the crossover of the fittest individuals with the least fit individuals in order to enhance the genetic diversity. Thus, the GAMMC prevents premature convergence, increases population fitness and reduces the processing time. Therefore, the GAMMC-P uses a reconfigurable algorithm with multiple objectives, different coding and genetic operator MMC. The test results show that GAMMC-P reached the proposed requirements for different operating conditions of a planar RAV.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cada vez mais, os principais objetivos na indústria é a produção a baixo custo, com a máxima qualidade e com o tempo de fabrico o mais curto possível. Para atingir esta meta, a indústria recorre, frequentemente, às máquinas de comando numérico (CNC), uma vez que com esta tecnologia torna se capaz alcançar uma elevada precisão e um tempo de processamento mais baixo. As máquinas ferramentas CNC podem ser aplicadas em diferentes processos de maquinagem, tais como: torneamento, fresagem, furação, entre outros. De todos estes processos, o mais utilizado é a fresagem devido à sua versatilidade. Utiliza-se normalmente este processo para maquinar materiais metálicos como é o caso do aço e dos ferros fundidos. Neste trabalho, são analisados os efeitos da variação de quatro parâmetros no processo de fresagem (velocidade de corte, velocidade de avanço, penetração radial e penetração axial), individualmente e a interação entre alguns deles, na variação da rugosidade num aço endurecido (aço 12738). Para essa análise são utilizados dois métodos de otimização: o método de Taguchi e o método das superfícies. O primeiro método foi utilizado para diminuir o número de combinações possíveis e, consequentemente, o número de ensaios a realizar é denominado por método de Taguchi. O método das superfícies ou método das superfícies de resposta (RSM) foi utilizado com o intuito de comparar os resultados obtidos com o método de Taguchi, de acordo com alguns trabalhos referidos na bibliografia especializada, o RSM converge mais rapidamente para um valor ótimo. O método de Taguchi é muito conhecido no setor industrial onde é utilizado para o controlo de qualidade. Apresenta conceitos interessantes, tais como robustez e perda de qualidade, sendo bastante útil para identificar variações do sistema de produção, durante o processo industrial, quantificando a variação e permitindo eliminar os fatores indesejáveis. Com este método foi vi construída uma matriz ortogonal L16 e para cada parâmetro foram definidos dois níveis diferentes e realizados dezasseis ensaios. Após cada ensaio, faz-se a medição superficial da rugosidade da peça. Com base nos resultados obtidos das medições da rugosidade é feito um tratamento estatístico dos dados através da análise de variância (Anova) a fim de determinar a influência de cada um dos parâmetros na rugosidade superficial. Verificou-se que a rugosidade mínima medida foi de 1,05m. Neste estudo foi também determinada a contribuição de cada um dos parâmetros de maquinagem e a sua interação. A análise dos valores de “F-ratio” (Anova) revela que os fatores mais importantes são a profundidade de corte radial e da interação entre profundidade de corte radial e profundidade de corte axial para minimizar a rugosidade da superfície. Estes têm contribuições de cerca de 30% e 24%, respetivamente. Numa segunda etapa este mesmo estudo foi realizado pelo método das superfícies, a fim de comparar os resultados por estes dois métodos e verificar qual o melhor método de otimização para minimizar a rugosidade. A metodologia das superfícies de resposta é baseada num conjunto de técnicas matemáticas e estatísticas úteis para modelar e analisar problemas em que a resposta de interesse é influenciada por diversas variáveis e cujo objetivo é otimizar essa resposta. Para este método apenas foram realizados cinco ensaios, ao contrário de Taguchi, uma vez que apenas em cinco ensaios consegue-se valores de rugosidade mais baixos do que a média da rugosidade no método de Taguchi. O valor mais baixo por este método foi de 1,03μm. Assim, conclui-se que RSM é um método de otimização mais adequado do que Taguchi para os ensaios realizados. Foram obtidos melhores resultados num menor número de ensaios, o que implica menos desgaste da ferramenta, menor tempo de processamento e uma redução significativa do material utilizado.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The optimal capacities and locations of a sequence of landfills are studied, and the interactions between these characteristics are considered. Deciding the capacity of a landfill has some spatial implications since it affects the feasible region for the remaining landfills, and some temporal implications because the capacity determines the lifetime of the landfill and hence the moment of time when the next landfills should be constructed. Some general mathematical properties of the solution are provided and interpreted from an economic point of view. The resulting problem turns out to be non-convex and, therefore, it cannot be solved by conventional optimization techniques. Some global optimization methods are used to solve the problem in a particular case in order to illustrate how the solution depends on the parameter values.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Scientific curiosity, exploration of georesources and environmental concerns are pushing the geoscientific research community toward subsurface investigations of ever-increasing complexity. This review explores various approaches to formulate and solve inverse problems in ways that effectively integrate geological concepts with geophysical and hydrogeological data. Modern geostatistical simulation algorithms can produce multiple subsurface realizations that are in agreement with conceptual geological models and statistical rock physics can be used to map these realizations into physical properties that are sensed by the geophysical or hydrogeological data. The inverse problem consists of finding one or an ensemble of such subsurface realizations that are in agreement with the data. The most general inversion frameworks are presently often computationally intractable when applied to large-scale problems and it is necessary to better understand the implications of simplifying (1) the conceptual geological model (e.g., using model compression); (2) the physical forward problem (e.g., using proxy models); and (3) the algorithm used to solve the inverse problem (e.g., Markov chain Monte Carlo or local optimization methods) to reach practical and robust solutions given today's computer resources and knowledge. We also highlight the need to not only use geophysical and hydrogeological data for parameter estimation purposes, but also to use them to falsify or corroborate alternative geological scenarios.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mobile sensor networks have unique advantages compared with wireless sensor networks. The mobility enables mobile sensors to flexibly reconfigure themselves to meet sensing requirements. In this dissertation, an adaptive sampling method for mobile sensor networks is presented. Based on the consideration of sensing resource constraints, computing abilities, and onboard energy limitations, the adaptive sampling method follows a down sampling scheme, which could reduce the total number of measurements, and lower sampling cost. Compressive sensing is a recently developed down sampling method, using a small number of randomly distributed measurements for signal reconstruction. However, original signals cannot be reconstructed using condensed measurements, as addressed by Shannon Sampling Theory. Measurements have to be processed under a sparse domain, and convex optimization methods should be applied to reconstruct original signals. Restricted isometry property would guarantee signals can be recovered with little information loss. While compressive sensing could effectively lower sampling cost, signal reconstruction is still a great research challenge. Compressive sensing always collects random measurements, whose information amount cannot be determined in prior. If each measurement is optimized as the most informative measurement, the reconstruction performance can perform much better. Based on the above consideration, this dissertation is focusing on an adaptive sampling approach, which could find the most informative measurements in unknown environments and reconstruct original signals. With mobile sensors, measurements are collect sequentially, giving the chance to uniquely optimize each of them. When mobile sensors are about to collect a new measurement from the surrounding environments, existing information is shared among networked sensors so that each sensor would have a global view of the entire environment. Shared information is analyzed under Haar Wavelet domain, under which most nature signals appear sparse, to infer a model of the environments. The most informative measurements can be determined by optimizing model parameters. As a result, all the measurements collected by the mobile sensor network are the most informative measurements given existing information, and a perfect reconstruction would be expected. To present the adaptive sampling method, a series of research issues will be addressed, including measurement evaluation and collection, mobile network establishment, data fusion, sensor motion, signal reconstruction, etc. Two dimensional scalar field will be reconstructed using the method proposed. Both single mobile sensors and mobile sensor networks will be deployed in the environment, and reconstruction performance of both will be compared.In addition, a particular mobile sensor, a quadrotor UAV is developed, so that the adaptive sampling method can be used in three dimensional scenarios.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we study constrained maximum entropy and minimum divergence optimization problems, in the cases where integer valued sufficient statistics exists, using tools from computational commutative algebra. We show that the estimation of parametric statistical models in this case can be transformed to solving a system of polynomial equations. We give an implicit description of maximum entropy models by embedding them in algebraic varieties for which we give a Grobner basis method to compute it. In the cases of minimum KL-divergence models we show that implicitization preserves specialization of prior distribution. This result leads us to a Grobner basis method to embed minimum KL-divergence models in algebraic varieties. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper provides an introduction to the topic of optimization on manifolds. The approach taken uses the language of differential geometry, however,we choose to emphasise the intuition of the concepts and the structures that are important in generating practical numerical algorithms rather than the technical details of the formulation. There are a number of algorithms that can be applied to solve such problems and we discuss the steepest descent and Newton's method in some detail as well as referencing the more important of the other approaches.There are a wide range of potential applications that we are aware of, and we briefly discuss these applications, as well as explaining one or two in more detail. © 2010 Springer -Verlag Berlin Heidelberg.