995 resultados para Opioid-receptor Knockout


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Statins possess anti-inflammatory effects that may contribute to their ability to slow atherogenesis, whereas nitric oxide (NO) also influences inflammatory cell adhesion. This study aimed to determine whether a novel NO-donating pravastatin derivative, NCX 6550 [(1S-[1∝(ßS*,dS*),2∝,6a∝,8ß-(R*),8a∝]]-1,2,6,7,8,8a-hexahydro-ß,δ,6-trihydroxy-2-methyl-8-(2-methyl-1-oxobutoxy)-1-naphthalene-heptanoic acid 4-(nitrooxy)butyl ester)], has greater anti-inflammatory properties compared with pravastatin in normal and atherosclerotic apolipoprotein E receptor knockout (ApoE-/-) mice. C57BL/6 and ApoE-/- mice were administered pravastatin (40 mg/kg), NCX 6550 (48.5 mg/kg), or vehicle orally for 5 days. Ex vivo studies assessed splenocyte adhesion to arterial segments and splenocyte reactive oxygen species (ROS) generation. NCX 6550 significantly reduced splenocyte adhesion to artery segments in both C57BL/6 (8.8 ± 1.9% versus 16.6 ± 6.7% adhesion; P < 0.05) and ApoE-/- mice (9.3 ± 2.9% versus 23.4 ± 4.6% adhesion; P < 0.05) concomitant with an inhibition of endothelial intercellular adhesion molecule-1 expression. NCX 6550 also significantly reduced phorbol 12-myristate 13-acetate-induced ROS production that was enhanced in isolated ApoE-/- splenocytes. Conversely, pravastatin had no significant effects on adhesion in normal or ApoE-/- mice but reduced the enhanced ROS production from ApoE-/- splenocytes. In separate groups of ApoE-/- mice, NCX 6550 significantly enhanced endothelium-dependent relaxation to carbachol in aortic segments precon-tracted with phenylephrine (-logEC50, 6.37 ± 0.37) compared with both vehicle-treated (-logEC50, 5.81 ± 0.15; P < 0.001) and pravastatin-treated (-logEC50, 5.57 ± 0.45; P < 0.05) mice. NCX 6550 also significantly reduced plasma monocyte chemoattractant protein-1 levels (648.8 pg/ml) compared with both vehicle (1191.1 pg/ml; P < 0.001) and pravastatin (847 ± 71.0 pg/ml; P < 0.05) treatment. These data show that NCX 6550 exerts superior anti-inflammatory actions compared with pravastatin, possibly through NO-related mechanisms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Upon activation, T cells require energy for growth, proliferation, and function. Effector T (Teff) cells, such as Th1 and Th17 cells, utilize high levels of glycolytic metabolism to fuel proliferation and function. In contrast, Treg cells require oxidative metabolism to fuel suppressive function. It remains unknown how Teff/Treg-cell metabolism is altered when nutrients are limited and leptin levels are low. We therefore examined the role of malnutrition and associated hypoleptinemia on Teff versus Treg cells. We found that both malnutrition-associated hypoleptinemia and T cell-specific leptin receptor knockout suppressed Teff-cell number, function, and glucose metabolism, but did not alter Treg-cell metabolism or suppressive function. Using the autoimmune mouse model EAE, we confirmed that fasting-induced hypoleptinemia altered Teff-cell, but not Treg-cell, glucose metabolism, and function in vivo, leading to decreased disease severity. To explore potential mechanisms, we examined HIF-1α, a key regulator of Th17 differentiation and Teff-cell glucose metabolism, and found HIF-1α expression was decreased in T cell-specific leptin receptor knockout Th17 cells, and in Teff cells from fasted EAE mice, but was unchanged in Treg cells. Altogether, these data demonstrate a selective, cell-intrinsic requirement for leptin to upregulate glucose metabolism and maintain function in Teff, but not Treg cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Obesity is a major challenge to human health worldwide. Little is known about the brain mechanisms that are associated with overeating and obesity in humans. In this project, multimodal neuroimaging techniques were utilized to study brain neurotransmission and anatomy in obesity. Bariatric surgery was used as an experimental method for assessing whether the possible differences between obese and non-obese individuals change following the weight loss. This could indicate whether obesity-related altered neurotransmission and cerebral atrophy are recoverable or whether they represent stable individual characteristics. Morbidly obese subjects (BMI ≥ 35 kg/m2) and non-obese control subjects (mean BMI 23 kg/m2) were studied with positron emission tomography (PET) and magnetic resonance imaging (MRI). In the PET studies, focus was put on dopaminergic and opioidergic systems, both of which are crucial in the reward processing. Brain dopamine D2 receptor (D2R) availability was measured using [11C]raclopride and µ-opioid receptor (MOR) availability using [11C]carfentanil. In the MRI studies, voxel-based morphometry (VBM) of T1-weighted MRI images was used, coupled with diffusion tensor imaging (DTI). Obese subjects underwent bariatric surgery as their standard clinical treatment during the study. Preoperatively, morbidly obese subjects had significantly lower MOR availability but unaltered D2R availability in several brain regions involved in reward processing, including striatum, insula, and thalamus. Moreover, obesity disrupted the interaction between the MOR and D2R systems in ventral striatum. Bariatric surgery and concomitant weight loss normalized MOR availability in the obese, but did not influence D2R availability in any brain region. Morbidly obese subjects had also significantly lower grey and white matter densities globally in the brain, but more focal changes were located in the areas associated with inhibitory control, reward processing, and appetite. DTI revealed also signs of axonal damage in the obese in corticospinal tracts and occipito-frontal fascicles. Surgery-induced weight loss resulted in global recovery of white matter density as well as more focal recovery of grey matter density among obese subjects. Altogether these results show that the endogenous opioid system is fundamentally linked to obesity. Lowered MOR availability is likely a consequence of obesity and may mediate maintenance of excessive energy uptake. In addition, obesity has adverse effects on brain structure. Bariatric surgery however reverses MOR dysfunction and recovers cerebral atrophy. Understanding the opioidergic contribution to overeating and obesity is critical for developing new psychological or pharmacological treatments for obesity. The actual molecular mechanisms behind the positive change in structure and neurotransmitter function still remain unclear and should be addressed in the future research.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cannabinoid-based medicines have therapeutic potential for the treatment of pain. Augmentation of levels of endocannabinoids with inhibitors of fatty acid amide hydrolase (FAAH) is analgesic in models of acute and inflammatory pain states. The aim of this study was to determine whether local inhibition of FAAH alters nociceptive responses of spinal neurons in the spinal nerve ligation model of neuropathic pain. Electrophysiological studies were performed 14-18 days after spinal nerve ligation or sham surgery, and the effects of the FAAHinhibitor cyclohexylcarbamic acid 3-carbamoyl biphenyl-3-yl ester (URB597) on mechanically evoked responses of spinal neurons and levels of endocannabinoids were determined. Intraplantar URB597 (25 _g in 50 _l) significantly ( p _ 0.01) attenuated mechanically evoked responses of spinal neurons in sham-operated rats. Effects of URB597 were blocked by the cannabinoid 1 receptor (CB1 ) antagonist AM251 [N-1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide] (30_g in50_l) and the opioid receptor antagonist naloxone. URB597 treatment increased levels of anandamide, 2-arachidonyl glycerol, and oleoyl ethanolamide in the ipsilateral hindpaw of shamoperated rats. Intraplantar URB597 (25 _g in 50 _l) did not, however, alter mechanically evoked responses of spinal neurons in spinal nerve ligated (SNL) rats or hindpaw levels of endocannabinoids. Intraplantar injection of a higher dose of URB597 (100 _g in 50 _l) significantly ( p_0.05) attenuated evoked responses of spinal neurons in SNL rats but did not alter hindpaw levels of endocannabinoids. Spinal administration of URB597 attenuated evoked responses of spinal neurons and elevated levels of endocannabinoids in shamoperated and SNL rats. These data suggest that peripheral FAAH activity may be altered or that alternative pathways of metabolism have greater importance in SNL rats.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tetracarpidium conophorum (TC) (Euphorbiaceae) is a perennial woody climbing shrub in low bush forest of some parts of West Africa and used among the natives for relief of ailments accompanying pain and inflammation. In this study, the analgesic and anti-inflammatory effects of the methanolic extract (METC) and fractions (ethyl acetate, F1 and n-hexane, F2) of Tetracarpidium conophorum leaf were evaluated in rat and mice. The analgesic activity was evaluated using acetic acid-induced writhing, formalin-induced paw licking and hot plate test models. Carrageenan-induced paw oedema was used to assess anti-inflammatory activity in rats. The mechanism of action of (TC) was explored by the use of naloxone, a non-selective opioid receptor blocker. The highest analgesic effect was observed in F2 extract at 57.21% inhibition and was further studied on various analgesic and anti-inflammatory models in graded doses. F2 significantly inhibited the late phase of formalin-induced paw licking and prolong hot plate latency at 55±1°C. The n-hexane fraction also significantly inhibited carrageenan-induced paw oedema in rats at 100 and 200mg/kg doses significantly (p< 0.001) and reduced paw licking response by 85.08% compared with control. Naloxone, an opioid receptor antagonist, did not significantly affect the changes observed with n-hexane fraction, thus ruling out the possibility of the involvement of opioid receptors in the analgesic actions of Tetracarpidium conophorum. Phytochemical screening showed that the leaf extracts contain alkaloids, tannins, saponins and cardenolides. The investigations showed that Tetracarpidium conophorum possesses significant anti-nociceptive and anti-inflammatory activities that should be explored.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ABSTRACT Background:Strong opioids are the treatment of choice for moderate to severe cancer-related pain. Fentanyl is a synthetic opioid with high affinity for the μ-opioid receptor and is 75–100 times more potent than morphine. Fentanyl is metabolised rapidly, particularly in the liver and only 10% is excreted as intact substance. The use of CYP3A4 inhibitors and inducers, impaired liver function, and heating of the patch potentially influence fentanyl pharmacokinetics in a clinically relevant way. The influence of BMI and gender on fentanyl pharmacokinetics is questionable. Pharmacogenetic, may influence fentanyl pharmacokinetic and other factors have been studied but did not show significant and clinically relevant effects on fentanyl pharmacokinetic. Method: This is a biological interventional prospective, single-center study in 49 patients with solid or haematological neoplasm treated with transdermal fentanyl undergoing 5-step pharmacokinetic and pharmacogenetic withdrawals from administration of the fentanyl patch. Objective:to evaluate the pharmacokinetic and pharmacogenetic of transdermal fentanyl in relation to the patient's clinical response on pain Results: Sex was the only parameter with evidence of different distribution between responders and non-responders , showing a major chance for male to be responders than females. We found some correlation with pharmacokinetic parameters and sex, regarding adverse events and NRS correlation with BPI. NAT2 and UGT2B7 polymorphisms are associated with AUC and Cmax kinetics parameters, NAT2 and CYP4F2 showed some evidence of association with the fentanyl dosage and CYP2B6 polymorphism seemed to be correlate with side effects. Conclusion: Small sample size of study population make difficult do find some significant correlation between pharmacogenetic, pharmacokinetic and clinical response. Larger studies are needed to increase knowledge about response to opioid treatment in cancer patients to better individualized pain treatment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introduction: The aim of this study was to characterize the formation and progression of experimentally induced periapical lesions in TLR2 knockout (TLR2 KO) mice. Methods: Periapical lesions were induced in molars of 28 wild type (WT) and 27 TLR2 KO mice. After 7, 21, and 42 days, the animals were euthanized, and the mandibles were subjected to histotechnical processing. Hematoxylin-eosin-stained sections were examined under conventional light microscopy for the description of pulpal, apical, and periapical features and under fluorescence microscopy for the determination of the periapical lesion size. The subsequent sections were evaluated by tartrate resistant acid phosphatase histoenzymology (osteoclasts), Brown and Brenn staining (bacteria), and immunohistochemistry (RANK, RANKL, and OPG). Data were analyzed by the Mann-Whitney U and Kruskal-Wallis tests (alpha = 0.05), Results: The WT group showed significant differences (P < .05) in the periapical lesion size and the osteoclast number between 7 and 42 days and between 21 and 42 days. In the TLR2 KO group, significant differences (P < .05) in the periapical lesion size and the osteoclast number were found between 7 days and the other periods. There was a significant difference (P < .05) between the 2 types of animal regarding the periapical lesion size, which was larger in the TLR2 KO animals. No significant differences (P > .05) were found between WT and TLR2 KO mice related to the pulpal, apical, and periapical features; bacteria localization; and immunohistochemical results (except for RANK expression). Conclusions: TLR2 KO animals developed larger periapical lesions with a greater number of osteoclasts, indicating the important role of this receptor in the host's immune and inflammatory response to root canal and periradicular infection. (J Endod 2012;38:803-813)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

γ-Aminobutyric acid (GABA) type A receptors mediate fast inhibitory synaptic transmission and have been implicated in responses to sedative/hypnotic agents (including neuroactive steroids), anxiety, and learning and memory. Using gene targeting technology, we generated a strain of mice deficient in the δ subunit of the GABA type A receptors. In vivo testing of various behavioral responses revealed a strikingly selective attenuation of responses to neuroactive steroids, but not to other modulatory drugs. Electrophysiological recordings from hippocampal slices revealed a significantly faster miniature inhibitory postsynaptic current decay time in null mice, with no change in miniature inhibitory postsynaptic current amplitude or frequency. Learning and memory assessed with fear conditioning were normal. These results begin to illuminate the novel contributions of the δ subunit to GABA pharmacology and sedative/hypnotic responses and behavior and provide insights into the physiology of neurosteroids.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mammalian anx7 gene codes for a Ca2+-activated GTPase, which supports Ca2+/GTP-dependent secretion events and Ca2+ channel activities in vitro and in vivo. To test whether anx7 might be involved in Ca2+ signaling in secreting pancreatic β cells, we knocked out the anx7 gene in the mouse and tested the insulin-secretory properties of the β cells. The nullizygous anx7 (−/−) phenotype is lethal at embryonic day 10 because of cerebral hemorrhage. However, the heterozygous anx7 (+/−) mouse, although expressing only low levels of ANX7 protein, is viable and fertile. The anx7 (+/−) phenotype is associated with a substantial defect in insulin secretion, although the insulin content of the islets, is 8- to 10-fold higher in the mutants than in the normal littermate control. We infer from electrophysiological studies that both glucose-stimulated secretion and voltage-dependent Ca2+ channel functions are normal. However, electrooptical recordings indicate that the (+/−) mutation has caused a change in the ability of inositol 1,4,5-trisphosphate (IP3)-generating agonists to release intracellular calcium. The principle molecular consequence of lower anx7 expression is a profound reduction in IP3 receptor expression and function in pancreatic islets. The profound increase in islets, β cell number, and size may be a means of compensating for less efficient insulin secretion by individual defective pancreatic β cells. This is a direct demonstration of a connection between glucose-activated insulin secretion and Ca2+ signaling through IP3-sensitive Ca2+ stores.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To investigate the contribution of individual serotonin (5-hydroxytryptamine; 5-HT) receptors to mood control, we have used homologous recombination to generate mice lacking specific serotonergic receptor subtypes. In the present report, we demonstrate that mice without 5-HT1A receptors display decreased exploratory activity and increased fear of aversive environments (open or elevated spaces). 5-HT1A knockout mice also exhibited a decreased immobility in the forced swim test, an effect commonly associated with antidepressant treatment. Although 5-HT1A receptors are involved in controlling the activity of serotonergic neurons, 5-HT1A knockout mice had normal levels of 5-HT and 5-hydroxyindoleacetic acid, possibly because of an up-regulation of 5-HT1B autoreceptors. Heterozygote 5-HT1A mutants expressed approximately one-half of wild-type receptor density and displayed intermediate phenotypes in most behavioral tests. These results demonstrate that 5-HT1A receptors are involved in the modulation of exploratory and fear-related behaviors and suggest that reductions in 5-HT1A receptor density due to genetic defects or environmental stressors might result in heightened anxiety.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A common feature of many metabolic pathways is their control by retinoid X receptor (RXR) heterodimers. Dysregulation of such metabolic pathways can lead to the development of atherosclerosis, a disease influenced by both systemic and local factors. Here we analyzed the effects of activation of RXR and some of its heterodimers in apolipoprotein E −/− mice, a well established animal model of atherosclerosis. An RXR agonist drastically reduced the development of atherosclerosis. In addition, a ligand for the peroxisome proliferator-activated receptor (PPAR)γ and a dual agonist of both PPARα and PPARγ had moderate inhibitory effects. Both RXR and liver X receptor (LXR) agonists induced ATP-binding cassette protein 1 (ABC-1) expression and stimulated ABC-1-mediated cholesterol efflux from macrophages from wild-type, but not from LXRα and β double −/−, mice. Hence, activation of ABC-1-mediated cholesterol efflux by the RXR/LXR heterodimer might contribute to the beneficial effects of rexinoids on atherosclerosis and warrant further evaluation of RXR/LXR agonists in prevention and treatment of atherosclerosis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Interleukin 1 receptor antagonist (IL-1ra) is a cytokine whose only known action is competitive inhibition of the binding of interleukin 1 (IL-1) to its receptor. To investigate the physiological roles of endogenously produced IL-1ra, we generated mice that either lack IL-1ra or overproduce it under control of the endogenous promoter. Mice lacking IL-1ra have decreased body mass compared with wild-type controls. They are more susceptible than controls to lethal endotoxemia but are less susceptible to infection with Listeria monocytogenes. Conversely, IL-1ra overproducers are protected from the lethal effects of endotoxin but are more susceptible to listeriosis. Serum levels of IL-1 following an endotoxin challenge are decreased in IL-1ra nulls and increased in IL-1ra overproducers in comparison to controls. These data demonstrate critical roles for endogenously produced IL-1ra in growth, responses to infection and inflammation, and regulation of cytokine expression.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The experimental manipulation of peptide growth hormones and their cellular receptors is central to understanding the pathways governing cellular signaling and growth control. Previous work has shown that intracellular antibodies targeted to the endoplasmic reticulum (ER) can be used to capture specific proteins as they enter the ER, preventing their transport to the cell surface. Here we have used this technology to inhibit the cell surface expression of the alpha subunit of the high-affinity interleukin 2 receptor (IL-2R alpha). A single-chain variable-region fragment of the anti-Tac monoclonal antibody was constructed with a signal peptide and a C-terminal ER retention signal. Intracellular expression of the single-chain antibody was found to completely abrogate cell surface expression of IL-2R alpha in stimulated Jurkat T cells. IL-2R alpha was detectable within the Jurkat cells as an immature 40-kDa form that was sensitive to endoglycosidase H, consistent with its retention in a pre- or early Golgi compartment. A single-chain antibody lacking the ER retention signal was also able to inhibit cell surface expression of IL-2R alpha although the mechanism appeared to involve rapid degradation of the receptor chain within the ER. These intracellular antibodies will provide a valuable tool for examining the role of IL-2R alpha in T-cell activation, IL-2 signal transduction, and the deregulated growth of leukemic cells which overexpress IL-2R alpha.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nerve development, which includes axon outgrowth and guidance, is regulated by many protein families, including receptor protein tyrosine phosphatases (RPTP's).Protein tyrosine phosphatase receptor type 0 (PTPRO) is a type III RPTP that is important for axon growth and guidance, as observed in chicks and flies. In order to examine the effects ofPTPRO on mammalian development, standard behavioral tests were used to compare mice lacking the gene for PTPRO (ROKO mice) to wild-type (WT) mice. The ROKO mice showed a significant delay in reacting to a thermal noxious stimulus, hotplate analgesia, when compared to the WT mice suggesting deficient nociceptive function. In a rotarod test for proprioceptive function the ROKO mice exhibited a significant decrease in the amount of time spent on the rotating rod than did the WT mice. Additional proprioception tests were performed including the climb, step reflex, beam, and mesh walk tests. In the climb and step (place) test, the ROKO group had a significantly lower accuracy in performing the tests than did the WT mice. Thus, mice lacking the PTPRO gene showed behavioral deficiencies that reflect impairment in sensory function, specifically for nociception and proprioception.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previously we have demonstrated that bradykinin B1 receptor deficient mice (B1KO) were protected against renal ischemia and reperfusion injury (IRI). Here, we aimed to analyze the effect of B1 antagonism on renal IRI and to study whether B1R knockout or antagonism could modulate the renal expression of pro and anti-inflammatory molecules. To this end, mice were subjected to 45 minutes ischemia and reperfused at 4, 24, 48 and 120 hours. Wild-type mice were treated intra-peritoneally with antagonists of either B1 (R-954, 200 mg/kg) or B2 receptor (HOE140, 200 mg/kg) 30 minutes prior to ischemia. Blood samples were collected to ascertain serum creatinine level, and kidneys were harvested for gene transcript analyses by real-time PCR. Herein, B1R antagonism ( R-954) was able to decrease serum creatinine levels, whereas B2R antagonism had no effect. The protection seen under B1R deletion or antagonism was associated with an increased expression of GATA-3, IL-4 and IL-10 and a decreased T-bet and IL-1b transcription. Moreover, treatment with R-954 resulted in lower MCP-1, and higher HO-1 expression. Our results demonstrated that bradykinin B1R antagonism is beneficial in renal IRI.