911 resultados para Operational validation
Resumo:
Environmental pollution continues to be an emerging study field, as there are thousands of anthropogenic compounds mixed in the environment whose possible mechanisms of toxicity and physiological outcomes are of great concern. Developing methods to access and prioritize the screening of these compounds at trace levels in order to support regulatory efforts is, therefore, very important. A methodology based on solid phase extraction followed by derivatization and gas chromatography-mass spectrometry analysis was developed for the assessment of four endocrine disrupting compounds (EDCs) in water matrices: bisphenol A, estrone, 17b-estradiol and 17a-ethinylestradiol. The study was performed, simultaneously, by two different laboratories in order to evaluate the robustness of the method and to increase the quality control over its application in routine analysis. Validation was done according to the International Conference on Harmonisation recommendations and other international guidelines with specifications for the GC-MS methodology. Matrix-induced chromatographic response enhancement was avoided by using matrix-standard calibration solutions and heteroscedasticity has been overtaken by a weighted least squares linear regression model application. Consistent evaluation of key analytical parameters such as extraction efficiency, sensitivity, specificity, linearity, limits of detection and quantification, precision, accuracy and robustness was done in accordance with standards established for acceptance. Finally, the application of the optimized method in the assessment of the selected analytes in environmental samples suggested that it is an expedite methodology for routine analysis of EDC residues in water matrices.
Resumo:
Purpose: The most recent Varian® micro multileaf collimator(MLC), the High Definition (HD120) MLC, was modeled using the BEAMNRCMonte Carlo code. This model was incorporated into a Varian medical linear accelerator, for a 6 MV beam, in static and dynamic mode. The model was validated by comparing simulated profiles with measurements. Methods: The Varian® Trilogy® (2300C/D) accelerator model was accurately implemented using the state-of-the-art Monte Carlo simulation program BEAMNRC and validated against off-axis and depth dose profiles measured using ionization chambers, by adjusting the energy and the full width at half maximum (FWHM) of the initial electron beam. The HD120 MLC was modeled by developing a new BEAMNRC component module (CM), designated HDMLC, adapting the available DYNVMLC CM and incorporating the specific characteristics of this new micro MLC. The leaf dimensions were provided by the manufacturer. The geometry was visualized by tracing particles through the CM and recording their position when a leaf boundary is crossed. The leaf material density and abutting air gap between leaves were adjusted in order to obtain a good agreement between the simulated leakage profiles and EBT2 film measurements performed in a solid water phantom. To validate the HDMLC implementation, additional MLC static patterns were also simulated and compared to additional measurements. Furthermore, the ability to simulate dynamic MLC fields was implemented in the HDMLC CM. The simulation results of these fields were compared with EBT2 film measurements performed in a solid water phantom. Results: Overall, the discrepancies, with and without MLC, between the opened field simulations and the measurements using ionization chambers in a water phantom, for the off-axis profiles are below 2% and in depth-dose profiles are below 2% after the maximum dose depth and below 4% in the build-up region. On the conditions of these simulations, this tungsten-based MLC has a density of 18.7 g cm− 3 and an overall leakage of about 1.1 ± 0.03%. The discrepancies between the film measured and simulated closed and blocked fields are below 2% and 8%, respectively. Other measurements were performed for alternated leaf patterns and the agreement is satisfactory (to within 4%). The dynamic mode for this MLC was implemented and the discrepancies between film measurements and simulations are within 4%. Conclusions: The Varian® Trilogy® (2300 C/D) linear accelerator including the HD120 MLC was successfully modeled and simulated using the Monte CarloBEAMNRC code by developing an independent CM, the HDMLC CM, either in static and dynamic modes.
Resumo:
GimC/Prefoldin is a hetero-oligomeric complex involved in cytoskeleton biogenesis. In order to identify by two-hybrid system targets that directly interact with Gims and support the stress phenotypes, this work aimed the functional validation of all Gims in saccharomyces cerevisiae.
Resumo:
O objectivo deste trabalho é optimizar o planeamento de produção tendo como meta a redução do custo total da energia eléctrica consumida. Este trabalho está dividido em 3 etapas distintas: na 1ª etapa foi feito um levantamento do problema, das restrições do mesmo e da escolha do modelo para a sua resolução. Na etapa seguinte, fez-se a escolha da ferramenta a usar, que foi o Xpress, e fez-se a implementação do problema nessa mesma ferramenta. E por fim, na 3ª etapa, foi feita a validação do modelo e análise das soluções obtidas com comparações com que o era feito antes. Recorrendo a programação inteira foi desenvolvido um modelo de optimização para atingir o objectivo em causa e consequentemente foi escrito o código que reflectisse o modelo matemático. Todos os passos necessários à sua implementação foram concluídos e validados com comparação com o que antes se fazia, notando-se assim melhorias ao nível de eficiência energética na ordem dos 8%, mas também uma melhoria no aproveitamento de recursos humanos e tempo que eram despendidos para desenvolver planos de produção de forma manual. Essa melhoria temporal que se compreende entre quatro a seis horas semanais pode ser aplicada noutras actividades da empresa com maior valor acrescentado.
Resumo:
Purpose - To develop and validate a psychometric scale for assessing image quality perception for chest X-ray images. Methods - Bandura's theory was used to guide scale development. A review of the literature was undertaken to identify items/factors which could be used to evaluate image quality using a perceptual approach. A draft scale was then created (22 items) and presented to a focus group (student and qualified radiographers). Within the focus group the draft scale was discussed and modified. A series of seven postero-anterior chest images were generated using a phantom with a range of image qualities. Image quality perception was confirmed for the seven images using signal-to-noise ratio (SNR 17.2–36.5). Participants (student and qualified radiographers and radiology trainees) were then invited to independently score each of the seven images using the draft image quality perception scale. Cronbach alpha was used to test interval reliability. Results - Fifty three participants used the scale to grade image quality perception on each of the seven images. Aggregated mean scale score increased with increasing SNR from 42.1 to 87.7 (r = 0.98, P < 0.001). For each of the 22 individual scale items there was clear differentiation of low, mid and high quality images. A Cronbach alpha coefficient of >0.7 was obtained across each of the seven images. Conclusion - This study represents the first development of a chest image quality perception scale based on Bandura's theory. There was excellent correlation between the image quality perception scores derived using the scale and the SNR. Further research will involve a more detailed item and factor analysis.
Resumo:
The aim of this paper is to develop models for experimental open-channel water delivery systems and assess the use of three data-driven modeling tools toward that end. Water delivery canals are nonlinear dynamical systems and thus should be modeled to meet given operational requirements while capturing all relevant dynamics, including transport delays. Typically, the derivation of first principle models for open-channel systems is based on the use of Saint-Venant equations for shallow water, which is a time-consuming task and demands for specific expertise. The present paper proposes and assesses the use of three data-driven modeling tools: artificial neural networks, composite local linear models and fuzzy systems. The canal from Hydraulics and Canal Control Nucleus (A parts per thousand vora University, Portugal) will be used as a benchmark: The models are identified using data collected from the experimental facility, and then their performances are assessed based on suitable validation criterion. The performance of all models is compared among each other and against the experimental data to show the effectiveness of such tools to capture all significant dynamics within the canal system and, therefore, provide accurate nonlinear models that can be used for simulation or control. The models are available upon request to the authors.
Resumo:
A new procedure for determining eleven organochlorine pesticides in soils using microwave-assisted extraction (MAE) and headspace solid phase microextraction (HS-SPME) is described. The studied pesticides consisted of mirex, α- and γ-chlordane, p,p’-DDT, heptachlor, heptachlor epoxide isomer A, γ-hexachlorocyclohexane, dieldrin, endrin, aldrine and hexachlorobenzene. The HS-SPME was optimized for the most important parameters such as extraction time, sample volume and temperature. The present analytical procedure requires a reduced volume of organic solvents and avoids the need for extract clean-up steps. For optimized conditions the limits of detection for the method ranged from 0.02 to 3.6 ng/g, intermediate precision ranged from 14 to 36% (as CV%), and the recovery from 8 up to 51%. The proposed methodology can be used in the rapid screening of soil for the presence of the selected pesticides, and was applied to landfill soil samples.
Resumo:
Amulti-residue methodology based on a solid phase extraction followed by gas chromatography–tandem mass spectrometry was developed for trace analysis of 32 compounds in water matrices, including estrogens and several pesticides from different chemical families, some of them with endocrine disrupting properties. Matrix standard calibration solutions were prepared by adding known amounts of the analytes to a residue-free sample to compensate matrix-induced chromatographic response enhancement observed for certain pesticides. Validation was done mainly according to the International Conference on Harmonisation recommendations, as well as some European and American validation guidelines with specifications for pesticides analysis and/or GC–MS methodology. As the assumption of homoscedasticity was not met for analytical data, weighted least squares linear regression procedure was applied as a simple and effective way to counteract the greater influence of the greater concentrations on the fitted regression line, improving accuracy at the lower end of the calibration curve. The method was considered validated for 31 compounds after consistent evaluation of the key analytical parameters: specificity, linearity, limit of detection and quantification, range, precision, accuracy, extraction efficiency, stability and robustness.
Resumo:
Food lipid major components are usually analyzed by individual methodologies using diverse extractive procedures for each class. A simple and fast extractive procedure was devised for the sequential analysis of vitamin E, cholesterol, fatty acids, and total fat estimation in seafood, reducing analyses time and organic solvent consumption. Several liquid/liquid-based extractive methodologies using chlorinated and non-chlorinated organic solvents were tested. The extract obtained is used for vitamin E quantification (normal-phase HPLC with fluorescence detection), total cholesterol (normal-phase HPLC with UV detection), fatty acid profile, and total fat estimation (GC-FID), all accomplished in <40 min. The final methodology presents an adequate linearity range and sensitivity for tocopherol and cholesterol, with intra- and inter-day precisions (RSD) from 3 to 11 % for all the components. The developed methodology was applied to diverse seafood samples with positive outcomes, making it a very attractive technique for routine analyses in standard equipped laboratories in the food quality control field.
Resumo:
A new operationalmatrix of fractional integration of arbitrary order for generalized Laguerre polynomials is derived.The fractional integration is described in the Riemann-Liouville sense.This operational matrix is applied together with generalized Laguerre tau method for solving general linearmultitermfractional differential equations (FDEs).Themethod has the advantage of obtaining the solution in terms of the generalized Laguerre parameter. In addition, only a small dimension of generalized Laguerre operational matrix is needed to obtain a satisfactory result. Illustrative examples reveal that the proposedmethod is very effective and convenient for linear multiterm FDEs on a semi-infinite interval.
Resumo:
WiDom is a wireless prioritized medium access control protocol which offers a very large number of priority levels. Hence, it brings the potential to employ non-preemptive static-priority scheduling and schedulability analysis for a wireless channel assuming that the overhead of WiDom is modeled properly. One schedulability analysis for WiDom has already been proposed but recent research has created a new version of WiDom (we call it: Slotted WiDom) with lower overhead and for this version of WiDom no schedulability analysis exists. In this paper we propose a new schedulability analysis for slotted WiDom and extend it to work also for message streams with release jitter. We have performed experiments with an implementation of slotted WiDom on a real-world platform (MicaZ). We find that for each message stream, the maximum observed response time never exceeds the calculated response time and hence this corroborates our belief that our new scheduling theory is applicable in practice.
Resumo:
Operational Modal Analysis is currently applied in structural dynamic monitoring studies using conventional wired based sensors and data acquisition platforms. This approach, however, becomes inadequate in cases where the tests are performed in ancient structures with esthetic concerns or in others, where the use of wires greatly impacts the monitoring system cost and creates difficulties in the maintenance and deployment of data acquisition platforms. In these cases, the use of sensor platforms based on wireless and MEMS would clearly benefit these applications. This work presents a first attempt to apply this wireless technology to the structural monitoring of historical masonry constructions in the context of operational modal analysis. Commercial WSN platforms were used to study one laboratory specimen and one of the structural elements of a XV century building in Portugal. Results showed that in comparison to the conventional wired sensors, wireless platforms have poor performance in respect to the acceleration time series recorded and the detection of modal shapes. However, for frequency detection issues, reliable results were obtained, especially when random excitation was used as noise source.
Resumo:
The IEEE 802.15.4 is the most widespread used protocol for Wireless Sensor Networks (WSNs) and it is being used as a baseline for several higher layer protocols such as ZigBee, 6LoWPAN or WirelessHART. Its MAC (Medium Access Control) supports both contention-free (CFP, based on the reservation of guaranteed time-slots GTS) and contention based (CAP, ruled by CSMA/CA) access, when operating in beacon-enabled mode. Thus, it enables the differentiation between real-time and best-effort traffic. However, some WSN applications and higher layer protocols may strongly benefit from the possibility of supporting more traffic classes. This happens, for instance, for dense WSNs used in time-sensitive industrial applications. In this context, we propose to differentiate traffic classes within the CAP, enabling lower transmission delays and higher success probability to timecritical messages, such as for event detection, GTS reservation and network management. Building upon a previously proposed methodology (TRADIF), in this paper we outline its implementation and experimental validation over a real-time operating system. Importantly, TRADIF is fully backward compatible with the IEEE 802.15.4 standard, enabling to create different traffic classes just by tuning some MAC parameters.
Resumo:
Polyolefins are especially difficult to bond due to their non-polar, non-porous and chemically inert surfaces. Acrylic adhesives used in industry are particularly suited to bond these materials, including many grades of polypropylene (PP) and polyethylene (PE), without special surface preparation. In this work, the tensile strength of single-lap PE and mixed joints bonded with an acrylic adhesive was investigated. The mixed joints included PE with aluminium (AL) or carbon fibre reinforced plastic (CFRP) substrates. The PE substrates were only cleaned with isopropanol, which assured cohesive failures. For the PE CFRP joints, three different surfaces preparations were employed for the CFRP substrates: cleaning with acetone, abrasion with 100 grit sand paper and peel-ply finishing. In the PE AL joints, the AL bonding surfaces were prepared by the following methods: cleaning with acetone, abrasion with 180 and 320 grit sand papers, grit blasting and chemical etching with chromic acid. After abrasion of the CFRP and AL substrates, the surfaces were always cleaned with acetone. The tensile strengths were compared with numerical results from ABAQUS® and a mixed mode (I+II) cohesive damage model. A good agreement was found between the experimental and numerical results, except for the PE AL joints, since the AL surface treatments were not found to be effective.
Resumo:
Mestrado em Intervenção Sócio-Organizacional na Saúde - Área de especialização: Políticas de Administração e Gestão em Saúde