966 resultados para OLEIC-ACID


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study aimed at evaluating the effect of increasing organic loading rates and of enzyme pretreatment on the stability and efficiency of a hybrid upflow anaerobic sludge blanket reactor (UASBh) treating dairy effluent. The UASBh was submitted to the following average organic loading rates (OLR) 0.98 Kg.m(-3).d(-1), 4.58 Kg.m(-3).d(-1), 8.89 Kg.m(-3).d(-1) and 15.73 Kg.m(-3).d(-1), and with the higher value, the reactor was fed with effluent with and without an enzymatic pretreatment to hydrolyze fats. The hydraulic detention time was 24 h, and the temperature was 30 +/- 2 degrees C. The reactor was equipped with a superior foam bed and showed good efficiency and stability until an OLR of 8.89 Kg.m(-3).d(-1). The foam bed was efficient for solid retention and residual volatile acid concentration consumption. The enzymatic pretreatment did not contribute to the process stability, propitiating loss in both biomass and system efficiency. Specific methanogenic activity tests indicated the presence of inhibition after the sludge had been submitted to the pretreated effluent It was concluded that continuous exposure to the hydrolysis products or to the enzyme caused a dramatic drop in the efficiency and stability of the process, and the single exposure of the biomass to this condition did not inhibit methane formation. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soybean oil can be deacidified by liquid-liquid extraction with ethanol. In the present paper, the liquid-liquid equilibria of systems composed of refined soybean oil, commercial linoleic acid, ethanol and water were investigated at 298.2 K. The experimental data set obtained from the present study (at 298.2 K) and the results of Mohsen-Nia et al. [1] (at 303.2 K) and Rodrigues et al. [2] (at 323.2 K) were correlated by applying the non-random two liquid (NRTL) model. The results of the present study indicated that the mutual solubility of the compounds decreased with an increase in the water content of the solvent and a decrease in the temperature of the solution. Among variables, the water content of the solvent had the strongest effect on the solubility of the components. The maximum deviation and average variance between the experimental and calculated compositions were 1.60% and 0.89%, indicating that the model could accurately predict the behavior of the compounds at different temperatures and degrees of hydration. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Liquid-liquid equilibrium experimental data for refined sunflower seed oil, artificially acidified with commercial oleic acid or commercial linoleic acid and a solvent (ethanol + water), were determined at 298.2 K. This set of experimental data and the experimental data from Cuevas et al.,(1) which were obtained from (283.2 to 333.2) K, for degummed sunflower seed oil-containing systems were correlated using NRTL and UNIQUAC models with temperature-dependent binary parameters. The deviation between experimental and calculated compositions presented average values of (1.13 and 1.41) % for NRTL and UNIQUAC equations, respectively, indicating that the models were able to correctly describe the behavior of compounds under different temperature and solvent hydration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work presents liquid-liquid experimental data for systems composed of sunflower seed oil, ethanol and water from 10 to 60 degrees C. The influence of process variables (temperature (T) and water concentration in the solvent (W)) on both the solvent content present in the raffinate (S(RP)) and extract (S(EP)) phases and the partition of free fatty acids (k(2)) was evaluated using the response surface methodology, where flash calculations were performed for each trial using the UNIQUAC equation. Water content in the solvent was the most important factor on the responses of S(EP) and k(2). Additionally, statistical analysis showed that the S(RP) was predominantly affected by temperature factor for low water content in the solvent. (c) 2009 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present paper reports phase equilibrium experimental data for two systems composed by peanut oil or avocado seed oil + commercial oleic acid + ethanol + water at 298.2 K and different water contents in the solvent. The addition of water to the solvent reduces the loss of neutral oil in the alcoholic phase and improves the solvent selectivity. The experimental data were correlated by the NRTL and UNIQUAC models. The global deviations between calculated and experimental values were 0.63 % and 1.08 %, respectively, for the systems containing avocado seed oil. In the case of systems containing peanut oil those deviations were 0.65 % and 0.98 %, respectively. Such results indicate that both models were able to reproduce correctly the experimental data, although the NRTL model presented a better performance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Annona (Annonaceae) is an important source of fruits in the Brazilian Cerrado and the Amazon Rainforest. Some Annona species are widely commercialized as fresh fruit or as frozen pulp. Seeds are accustomedly discarded. Our main goal was to analyze fatty acids profile from seeds of A. crassiflora and A. coriacea from Cerrado, A. montana from Amazon Forest, and three cultivars (A. cherimola cv. Madeira, A. cherimola x A. squamosa cv. Pink`s Mammonth and A. cherimola x A. squamosa cv. Gefner). The total oil yield ranged between 20 and 42% by weight of dry mass. The A cherimola x A. squamosa cv. Gefner has significantly higher total lipid yield than all other samples. 100 g of fruit of this species present 6-8 g of seeds. Considering the fruit production of Chile (over 221 ton of fruits/year), more than 1300 ton of seed/year could be obtained, which could provide at least 200 ton of seed oil. Oleic acid was predominant for most samples, but for A. montana linoleic acid was the most abundant FA. Phenotypic variation on FAME profile was observed. These new data are an urgent requirement for supporting conservation programs, mainly for Cerrado areas in Brazil.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present study, the effects of trans-MUFA, elaidic acid (EA; 18 : 1-9t) and vaccenic acid (VA; 18 : 1-11t) on rat neutrophil functions were compared with those of cis-monounsaturated oleic acid (OA) (18 : 1-9c) and saturated stearic acid (SA; 18 : 0) (10-150 mu M). Trans-fatty acids enhanced neutrophil phagocytic capacity, superoxide (O(2)(center dot-)) and hydrogen peroxide production, and candidacidal activity. The same effects were observed for OA. Cells treated with trans-MUFA showed reduced production of NO(center dot), whereas those treated with OA showed an increase in production. Treatment with SA did not provoke significant effect on the parameters investigated. The increase in O(2)(center dot-) production induced by MUFA was not observed when diphenyleneiodonium, an NADPH oxidase inhibitor, was added to the medium. This finding suggests that MUFA stimulate neutrophil NADPH oxidase activity. The addition of 3-[1-[3-(dimethylamino)propyl]-1H-indol-3-yl]-4-(1H-inclol-3-yl)-1H-pyrrole-2,5-dione, a protein kinase C (PKC) inhibitor, and wortmannin, a phosphatidylinositol-3 kinase (PI3K) inhibitor, did not affect O(2)(center dot-) production induced by MUFA. Therefore, the mechanisms by which MUFA stimulate NADPH oxidase are not dependent on PKC and do not seem to involve PI3K. Experiments using Zn(2+), an inhibitor of NADPH oxidase H(+) channel, indicated that MUFA activate the NADPH oxidase complex in rat neutrophil due to opening of H(+) channel.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The reported effects of different families of fatty acids (FA; SFA, MUFA, n-3 and n-6 PUFA) on human health and the importance of macrophage respiratory burst and cytokine release to immune defence led us to examine the influence of palmitic acid (PA), oleic acid (OA), linoleic acid, arachidonic acid, EPA and DHA on macrophage function. We determined fungicidal activity, reactive oxygen species (ROS) and cytokine production after the treatment of J774 cells with non-toxic concentrations of the FA. PA had a late and discrete stimulating effect on ROS production, which may be associated with the reduced fungicidal activity of the cells after treatment with this FA. OA presented a sustained stimulatory effect on ROS production and increased fungicidal activity of the cells, suggesting that enrichment of diets with OA may be beneficial for pathogen elimination. The effects of PUFA on ROS production were time-and dose-dependently regulated, with no evident differences between n-3 and n-6 PUFA. It was worth noting that most changes induced after stimulation of the cells with lipopolysaccharide were suppressed by the FA. The present results suggest that supplementation of the diet with specific FA, not classes of FA, might enable an improvement in host defence mechanisms or a reduction in adverse immunological reactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background The incorporation of lipid emulsions in parenteral diets is a requirement for energy and essential fatty acid supply to critically ill patients. The most frequently used IV lipid emulsions (LE) are composed with long-chain triacylglycerols rich in omega-6 polyunsaturated fatty acids (PUFA) from soybean oil, but these LE promote lymphocyte and neutrophil death. A new emulsion containing 20% soybean oil and 80% olive oil rich in (omega-9 monounsaturated fatty acids (MUFA) has been hypothesized not to cause impairment of immune function. In this study, the toxicity of an olive oil-based emulsion (OOE) on lymphocytes and neutrophils from healthy volunteers was investigated. Methods: Twenty volunteers were recruited and blood was. collected before a 6-hour infusion of an OOE, immediately after infusion, and again 18 hours postinfusion. Lymphocytes and neutrophils were isolated by gradient density. The cells were studied immediately after isolation and after 24 hours or 48 hours in culture. The following determinations were carried out: triacylglycerol levels and fatty acid composition and levels in plasma, lymphocyte proliferation, production of reactive oxygen species, and parameters of lymphocyte and neutrophil death (viability, DNA fragmentation, phosphatidylserine externalization, mitochondrial depolarization, and neutral lipid accumulation). Results: OOE decreased lymphocyte proliferation, provoked lymphocyte necrosis, and had no effect on the proportion of viable neutrophils. The mechanism of cell death induced by OOE involved neutral lipid accumulation but had no effect on mitochondrial membrane depolarization. Conclusions: The OOE given as a single dose of 500 mL induced low toxicity to lymphocytes from healthy volunteers, probably by necrosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many macrophage functions are modulated by fatty acids (FAs), including cytokine release, such as tumor necrosis factor-alpha (TNF-alpha). TNF-alpha is of great interest due to its role in the inflammation process observed in several diseases such as rheumatoid arthritis, atherosclerosis, and obesity. However, the mechanisms by which FA effects occur have not been completely elucidated yet. In this study, we used a mouse monocyte lineage (J774 cells) to evaluate the effect of 50 and 100 mu M of saturated (palmitic and stearic acids), monounsaturated (oleic acid) and polyunsaturated (linoleic acid) FAs on TNF-alpha production. Alterations in gene expression, poly(A) tail length and activation of transcription factors were evaluated. Oleic and linoleic acids, usually known as neutral or pro-inflammatory FA, inhibited LPS-induced TNF-alpha secretion by the cells. Saturated FAs were potent inducers of TNF-alpha expression and secretion under basal and inflammatory conditions (in the presence of LPS). Although the effect of the saturated FA was similar, the mechanism involved in each case seem to be distinct, as palmitic acid increased EGR-1 and CREB binding activity and stearic acid increased mRNA poly(A) tail. These results may contribute to the understanding of the molecular mechanisms by which saturated FAs modulate the inflammatory response and may lead to design of associations of dietary and pharmacological strategies to counteract the pathological effects of TNF-alpha.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The production of PHA from plant oils by Pseudomonas species soil isolated from a sugarcane crop was evaluated. Out of 22 bacterial strains three were able to use efficiently plant oils to grow and to accumulate PHA. Pseudomonas putida and Pseudomonas aeruginosa strains produced PHA presenting differences on monomer composition compatible with variability on monomer specificity of their PHA biosynthesis system. The molar fraction of 3-hydroxydodecanoate detected in the PHA was linearly correlated to the oleic acid supplied. A non-linear relationship between the molar fractions of 3-hydroxy-6-dodecenoate (3HDd Delta(6)) detected in PHA and the linoleic acid supplied was observed, compatible with saturation in the biosynthesis system capability to channel intermediate of P-oxidation to PHA synthesis. Although P. putida showed a higher 3HDd Delta(6) yield from linoleic acid when compared to P. aeruginosa, in both species it was less than 10% of the maximum theoretical value. These results contribute to the knowledge about the biosynthesis of PHA with a controlled composition from plant oils allowing in the future establishing the production of these polyesters as tailor-made polymers. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The influence of different M(2+) cations on the effective magnetic anisotropy of systems composed of MFe(2)O(4) (M Fe, Co and Mn) nanoparticles was investigated. Samples were prepared by the high-temperature (538 K) solution phase reaction of Fe (acac) 3, Co (acac) 2 and Mn (acac) 2 with 1,2 octanodiol in the presence of oleic acid and oleylamine. The final particles are coated by an organic layer of oleic acid that prevents agglomeration. Transmission electron microscopy (TEM) images show that particles present near spherical form and a narrow grain size distribution, with mean diameters in the range of 4.5 - 7.6 nm. Powder samples were analyzed by ac susceptibility and Mossbauer measurements, and K(eff) for all samples was evaluated using both techniques, showing a strong dependence on the nature of the divalent cation. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The efficacy of trout oil (TO), extracted from trout offal from the aquaculture industry, was evaluated in juvenile Murray cod Maccullochella peelii peelii (25.4-0.81 g) diets in an experiment conducted over 60 days at 23.7-0.8 °C. Five isonitrogenous (48% protein), isolipidic (16%) and isoenergetic (21.8 kJ gm1) diets, in which the fish oil fraction was replaced in increments of 25% (0-100%), were used. The best growth and feed efficiency was observed in fish fed diets containing 50-75% TO. The relationship of specific growth rate (SGR), food conversion ratio (FCR) and protein efficiency ratio (PER) to the amount of TO in the diets was described in each case by second-order polynomial equations (P<0.05), which were: SGR=-0.44TO2+0.52TO+1.23 (r2=0.90, P<0.05); FCR=0.53TO2-0.64TO+1.21 (r2=0.95, P<0.05); and PER=-0.73TO2+0.90TO+1.54 (r2=0.90, P<0.05). Significant differences in carcass and muscle proximate compositions were noted among the different dietary treatments. Less lipid was found in muscle than in carcass. The fatty acids found in highest amounts in Murray cod, irrespective of the dietary treatment, were palmitic acid (16:0), oleic acid (18:1n-9), linoleic acid (18:2n-6) and eicosapentaenoic acid (20:5n-3). The fatty acid composition of the muscle reflected that of the diets. Both the n-6 fatty acid content and the n-3 to n-6 ratio were significantly (P<0.05) related to growth parameters, the relationships being as follows. Percentage of n-6 in diet (X) to SGR and FCR: SGR=-0.12X2+3.96X-32.51 (r2=0.96) and FCR=0.13X2-4.47X+39.39 (r2=0.98); and n-3:n-6 ratio (Z) to SGR, FCR, PER: SGR=-2.02Z2+5.01Z-1.74 (r2=0.88), FCR=2.31Z2-5.70Z+4.54 (r2=0.93) and PER=-3.12Z2-7.56Z+2.80 (r2=0.88) respectively. It is evident from this study that TO could be used effectively in Murray cod diets, and that an n-3:n-6 ratio of 1.2 results in the best growth performance in Murray cod.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is widely reported that an association exists between dietary fat intake and the incidence of prostate cancer in humans. To study this association, there is a need for an animal model where prostate carcinogenesis occurs spontaneously. The canine prostate is considered a suitable experimental model for prostate cancer in humans since it is morphologically similar to the human prostate and both humans and dogs have a predisposition to benign and malignant prostate disease. In this study, the FA and lipids profiles of the normal canine prostate tissue from nine dogs were examined. The total lipid content of the canine prostate tissue was 1.7±0.5% (wet weight). The lipid composition analysis using TLC-FID showed that the two major lipid classes were phospholipids and TAG. Total FA, phospholipid, and TAG FA analysis showed that the major FA were palmitic acid (16∶0), stearic acid (18∶0), oleic acid (18∶1), linoleic acid (18∶2n−6), and arachidonic acid (20∶4n−6), The n−3 FA were present at <3% of total FA and included α-linolenic acid (18∶3n−3) (in total and TAG tissue FA), EPA (20∶5n−3) (not in TAG), and DHA (22∶6n−3) (not in TAG). The n−3/n−6 ratio was 1∶11, 1∶13, and 1∶8 in total, phospholipid, and TAG FA, respectively. This study shows the canine prostate has a low level of n−3 FA and a low n−3/n−6 ratio. This is perhaps due to low n−3 content of the diet of the dogs. FA analysis of dogfoods available in Australia showed that the n−3 content in both supermarket and premium bran dogfoods was <3% (wet weight), and the n−3/n−6 ratio was low.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dietary polyunsaturated fatty acids (PUFA) play a key role in regulating delta-6 desaturase (D6D), the key enzyme for long-chain PUFA biosynthesis. Nevertheless, the extent of their effects on this enzyme remains controversial and difficult to assess. It has been generally admitted that C18 unsaturated fatty acids (UFAs) regulate negatively delta-6 desaturase (D6D). This inhibition has been evidenced in regard to a high glucose/fat free (HG/FF) diet used in reference. However, several nutritional investigations did not evidence any inhibition of desaturases when feeding fatty acids.

Because the choice of the basal diet appeared to be of primary importance in such experiments, our goal was to reconsider the specific role of dietary UFAs on D6D regulation, depending on nutritional conditions. For that, sixteen adult Wistar rats were fed purified linoleic acid, α-linolenic acid or oleic acid, included in one of two diets at 4% by weight: an HG/FF or a high starch base (HS) where the pure UFAs replaced a mixed vegetable oil. Our results showed first that D6D specific activity was significantly greater when measured in presence of an HG/FF than with an HS/4% vegetable oil diet. Secondly, we found that linoleic and alpha-linolenic acids added to HG/FF reduced the specific activity of D6D. In contrast, when pure UFAs were added to an HS base, D6D specific activities remained unchanged or increased. Concordant results were obtained on D6D mRNA expression.

Altogether, this study evidenced the importance of the nutritional status in D6D regulation by C18 UFAs: when used as control, HG/FF diet stimulates D6D compared with a standard control diet containing starch and 4% fats, leading to an overestimation of the D6D regulation by UFAs. Then, UFAs should be considered as repressors for unsaturated fatty acid biosynthesis only in very specific nutritional conditions.