971 resultados para Nonlinear terms


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The multibody dynamics of a satellite in circular orbit, modeled as a central body with two hinge-connected deployable solar panel arrays, is investigated. Typically, the solar panel arrays are deployed in orbit using preloaded torsional springs at the hinges in a near symmetrical accordion manner, to minimize the shock loads at the hinges. There are five degrees of freedom of the interconnected rigid bodies, composed of coupled attitude motions (pitch, yaw and roll) of the central body plus relative rotations of the solar panel arrays. The dynamical equations of motion of the satellite system are derived using Kane's equations. These are then used to investigate the dynamic behavior of the system during solar panel deployment via the 7-8th-order Runge-Kutta integration algorithms and results are compared with approximate analytical solutions. Chaotic attitude motions of the completely deployed satellite in circular orbit under the influence of the gravity-gradient torques are subsequently investigated analytically using Melnikov's method and confirmed via numerical integration. The Hamiltonian equations in terms of Deprit's variables are used to facilitate the analysis. (C) 2003 Published by Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the nonlinear vibration of imperfect shear deformable laminated rectangular plates comprising a homogeneous substrate and two layers of functionally graded materials (FGMs). A theoretical formulation based on Reddy's higher-order shear deformation plate theory is presented in terms of deflection, mid-plane rotations, and the stress function. A semi-analytical method, which makes use of the one-dimensional differential quadrature method, the Galerkin technique, and an iteration process, is used to obtain the vibration frequencies for plates with various boundary conditions. Material properties are assumed to be temperature-dependent. Special attention is given to the effects of sine type imperfection, localized imperfection, and global imperfection on linear and nonlinear vibration behavior. Numerical results are presented in both dimensionless tabular and graphical forms for laminated plates with graded silicon nitride/stainless steel layers. It is shown that the vibration frequencies are very much dependent on the vibration amplitude and the imperfection mode and its magnitude. While most of the imperfect laminated plates show the well-known hard-spring vibration, those with free edges can display soft-spring vibration behavior at certain imperfection levels. The influences of material composition, temperature-dependence of material properties and side-to-thickness ratio are also discussed. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interaction of electromagnetic radiation with plasmas is studied in relativistic four-vector formalism. A gauge and Lorentz invariant ponderomotive four-force is derived from the time dependent nonlinear three-force of Hora (1985). This four-force, due to its Lorentz invariance, contains new magnetic field terms. A new gauge and Lorentz invariant model of the response of plasma to electromagnetic radiation is then devised. An expression for the dispersion relation is obtained from this model. It is then proved that the magnetic permeability of plasma is unity for a general reference frame. This is an important result since it has been previously assumed in many plasma models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Q parameter scales differently with the noise power for the signal-noise and the noise-noise beating terms in scalar and vector models. Some procedures for including noise in the scalar model largely under-estimate the Q parameter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis was focused on theoretical models of synchronization to cortical dynamics as measured by magnetoencephalography (MEG). Dynamical systems theory was used in both identifying relevant variables for brain coordination and also in devising methods for their quantification. We presented a method for studying interactions of linear and chaotic neuronal sources using MEG beamforming techniques. We showed that such sources can be accurately reconstructed in terms of their location, temporal dynamics and possible interactions. Synchronization in low-dimensional nonlinear systems was studied to explore specific correlates of functional integration and segregation. In the case of interacting dissimilar systems, relevant coordination phenomena involved generalized and phase synchronization, which were often intermittent. Spatially-extended systems were then studied. For locally-coupled dissimilar systems, as in the case of cortical columns, clustering behaviour occurred. Synchronized clusters emerged at different frequencies and their boundaries were marked through oscillation death. The macroscopic mean field revealed sharp spectral peaks at the frequencies of the clusters and broader spectral drops at their boundaries. These results question existing models of Event Related Synchronization and Desynchronization. We re-examined the concept of the steady-state evoked response following an AM stimulus. We showed that very little variability in the AM following response could be accounted by system noise. We presented a methodology for detecting local and global nonlinear interactions from MEG data in order to account for residual variability. We found crosshemispheric nonlinear interactions of ongoing cortical rhythms concurrent with the stimulus and interactions of these rhythms with the following AM responses. Finally, we hypothesized that holistic spatial stimuli would be accompanied by the emergence of clusters in primary visual cortex resulting in frequency-specific MEG oscillations. Indeed, we found different frequency distributions in induced gamma oscillations for different spatial stimuli, which was suggestive of temporal coding of these spatial stimuli. Further, we addressed the bursting character of these oscillations, which was suggestive of intermittent nonlinear dynamics. However, we did not observe the characteristic-3/2 power-law scaling in the distribution of interburst intervals. Further, this distribution was only seldom significantly different to the one obtained in surrogate data, where nonlinear structure was destroyed. In conclusion, the work presented in this thesis suggests that advances in dynamical systems theory in conjunction with developments in magnetoencephalography may facilitate a mapping between levels of description int he brain. this may potentially represent a major advancement in neuroscience.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The noise properties of supercontinuum generation continue to be a subject of wide interest within both pure and applied physics. Aside from immediate applications in supercontinuum source development, detailed studies of supercontinuum noise mechanisms have attracted interdisciplinary attention because of links with extreme instabilities in other physical systems, especially the infamous and destructive oceanic rogue waves. But the instabilities inherent in supercontinuum generation can also be interpreted in terms of natural links with the general field of random processes, and this raises new possibilities for applications in areas such as random number generation. In this contribution we will describe recent work where we interpret supercontinuum intensity and phase fluctuations in this way.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the integrable nonlinear Schrodinger equation (NLSE) as a channel model, we describe the application of nonlinear spectral management for effective mitigation of all nonlinear distortions induced by the fiber Kerr effect. Our approach is a modification and substantial development of the so-called eigenvalue communication idea first presented in A. Hasegawa, T. Nyu, J. Lightwave Technol. 11, 395 (1993). The key feature of the nonlinear Fourier transform (inverse scattering transform) method is that for the NLSE, any input signal can be decomposed into the so-called scattering data (nonlinear spectrum), which evolve in a trivial manner, similar to the evolution of Fourier components in linear equations. We consider here a practically important weakly nonlinear transmission regime and propose a general method of the effective encoding/modulation of the nonlinear spectrum: The machinery of our approach is based on the recursive Fourier-type integration of the input profile and, thus, can be considered for electronic or all-optical implementations. We also present a novel concept of nonlinear spectral pre-compensation, or in other terms, an effective nonlinear spectral pre-equalization. The proposed general technique is then illustrated through particular analytical results available for the transmission of a segment of the orthogonal frequency division multiplexing (OFDM) formatted pattern, and through WDM input based on Gaussian pulses. Finally, the robustness of the method against the amplifier spontaneous emission is demonstrated, and the general numerical complexity of the nonlinear spectrum usage is discussed. © 2013 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Architecture and learning algorithm of self-learning spiking neural network in fuzzy clustering task are outlined. Fuzzy receptive neurons for pulse-position transformation of input data are considered. It is proposed to treat a spiking neural network in terms of classical automatic control theory apparatus based on the Laplace transform. It is shown that synapse functioning can be easily modeled by a second order damped response unit. Spiking neuron soma is presented as a threshold detection unit. Thus, the proposed fuzzy spiking neural network is an analog-digital nonlinear pulse-position dynamic system. It is demonstrated how fuzzy probabilistic and possibilistic clustering approaches can be implemented on the base of the presented spiking neural network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Атанаска Георгиева, Стела Глухчева, Снежана Христова - Изследвана е устойчивостта на нелинейни диференциални уравнения с “максимуми” по отношение на две мерки. Приложени са две различни мерки за началните условия и за решението. Използван е методът на Разумихин, а също така и методът на сравнението на обикновени скаларни диференциални уравнения. Приложението на получените резултати и достатъчни условия за устойчивост е илюстрирано с пример.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 35R60, 60H15, 74H35.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One major drawback of coherent optical orthogonal frequency-division multiplexing (CO-OFDM) that hitherto remains unsolved is its vulnerability to nonlinear fiber effects due to its high peak-to-average power ratio. Several digital signal processing techniques have been investigated for the compensation of fiber nonlinearities, e.g., digital back-propagation, nonlinear pre- and post-compensation and nonlinear equalizers (NLEs) based on the inverse Volterra-series transfer function (IVSTF). Alternatively, nonlinearities can be mitigated using nonlinear decision classifiers such as artificial neural networks (ANNs) based on a multilayer perceptron. In this paper, ANN-NLE is presented for a 16QAM CO-OFDM system. The capability of the proposed approach to compensate the fiber nonlinearities is numerically demonstrated for up to 100-Gb/s and over 1000km and compared to the benchmark IVSTF-NLE. Results show that in terms of Q-factor, for 100-Gb/s at 1000km of transmission, ANN-NLE outperforms linear equalization and IVSTF-NLE by 3.2dB and 1dB, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We experimentally demonstrate ∼2 dB quality (Q)-factor enhancement in terms of fiber nonlinearity compensation of 40 Gb/s 16 quadrature amplitude modulation coherent optical orthogonal frequency-division multiplexing at 2000 km, using a nonlinear equalizer (NLE) based on artificial neural networks (ANN). Nonlinearity alleviation depends on escalation of the ANN training overhead and the signal bit rate, reporting ∼4 dB Q-factor enhancement at 70 Gb/s, whereas a reduction of the number of ANN neurons annihilates the NLE performance. An enhanced performance by up to ∼2 dB in Q-factor compared to the inverse Volterra-series transfer function NLE leads to a breakthrough in the efficiency of ANN.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation proposed a new approach to seizure detection in intracranial EEG recordings using nonlinear decision functions. It implemented well-established features that were designed to deal with complex signals such as brain recordings, and proposed a 2-D domain of analysis. Since the features considered assume both the time and frequency domains, the analysis was carried out both temporally and as a function of different frequency ranges in order to ascertain those measures that were most suitable for seizure detection. In retrospect, this study established a generalized approach to seizure detection that works across several features and across patients. ^ Clinical experiments involved 8 patients with intractable seizures that were evaluated for potential surgical interventions. A total of 35 iEEG data files collected were used in a training phase to ascertain the reliability of the formulated features. The remaining 69 iEEG data files were then used in the testing phase. ^ The testing phase revealed that the correlation sum is the feature that performed best across all patients with a sensitivity of 92% and an accuracy of 99%. The second best feature was the gamma power with a sensitivity of 92% and an accuracy of 96%. In the frequency domain, all of the 5 other spectral bands considered, revealed mixed results in terms of low sensitivity in some frequency bands and low accuracy in other frequency bands, which is expected given that the dominant frequencies in iEEG are those of the gamma band. In the time domain, other features which included mobility, complexity, and activity, all performed very well with an average a sensitivity of 80.3% and an accuracy of 95%. ^ The computational requirement needed for these nonlinear decision functions to be generated in the training phase was extremely long. It was determined that when the duration dimension was rescaled, the results improved and the convergence rates of the nonlinear decision functions were reduced dramatically by more than a 100 fold. Through this rescaling, the sensitivity of the correlation sum improved to 100% and the sensitivity of the gamma power to 97%, which meant that there were even less false negatives and false positives detected. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The variation of effective hydraulic conductivity as a function of specific discharge in several 0.2-m and 0.3-m cubes of Key Largo Limestone was investigated. The experimental results closely match the Forchheimer equation. Defining the pore-size length scale in terms of Forchheimer parameters, it is demonstrated that significant deviations from Darcian flow will occur when the Reynolds number exceeds 0.11. A particular threshold model previously proposed for use in karstic formations does not show strong agreement with the data near the onset of nonlinear flow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we introduce the periodic nonlinear Fourier transform (PNFT) method as an alternative and efficacious tool for compensation of the nonlinear transmission effects in optical fiber links. In the Part I, we introduce the algorithmic platform of the technique, describing in details the direct and inverse PNFT operations, also known as the inverse scattering transform for periodic (in time variable) nonlinear Schrödinger equation (NLSE). We pay a special attention to explaining the potential advantages of the PNFT-based processing over the previously studied nonlinear Fourier transform (NFT) based methods. Further, we elucidate the issue of the numerical PNFT computation: we compare the performance of four known numerical methods applicable for the calculation of nonlinear spectral data (the direct PNFT), in particular, taking the main spectrum (utilized further in Part II for the modulation and transmission) associated with some simple example waveforms as the quality indicator for each method. We show that the Ablowitz-Ladik discretization approach for the direct PNFT provides the best performance in terms of the accuracy and computational time consumption.