210 resultados para NONSMOOTH CONDUCTIVITIES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymers are typically electrically and thermally insulating materials. The electrical and thermal conductivities of polymers can be increased by the addition conductive fillers such as carbons. Once the polymer composites have been made electrically and thermally conductive, they can be used in applications where these conductivities are desired such as electromagnetic shielding and static dissipation. In this project, three carbon nanomaterials are added to polycarbonate to enhance the electrical and thermal conductivity of the resulting composite. Hyperion Catalysis FIBRILs carbon nanotubes were added to a maximum loading of 8 wt%. Ketjenblack EC-600 JD carbon black was added to a maximum loading of 10 wt%. XG Sciences xGnP™ graphene nanoplatelets were added to a maximum loading of 15 wt%. These three materials have drastically different morphologies and will have varying effects on the various properties of polycarbonate composites. It was determined that carbon nanotubes have the largest effect on electrical conductivity with an 8 wt% carbon nanotube in polycarbonate composite having an electrical conductivity of 0.128 S/cm (from a pure polycarbonate value of 10-17 S/cm). Carbon black has the next largest effect with an 8 wt% carbon black in polycarbonate composite having an electrical conductivity of 0.008 S/cm. Graphene nanoplatelets have the least effect with an 8 wt% graphene nanoplatelet in polycarbonate having an electrical conductivity of 2.53 x 10-8 S/cm. Graphene nanoplatelets show a significantly higher effect on increasing thermal conductivity than either carbon nanotubes or carbon black. Mechanically, all three materials have similar effects with graphene nanoplatelets being somewhat more effective at increasing the tensile modulus of the composite than the other fillers. Carbon black and graphene nanoplatelets show standard carbon-filler rheology where the addition of filler increases the viscosity of the resulting composite. Carbon nanotubes, on the other hand, show an unexpected rheology. As carbon nanotubes are added to polycarbonate the viscosity of the composite is reduced below that of the original polycarbonate. It was seen that the addition of carbon nanotubes offsets the increased viscosity from a second filler, such as carbon black or graphene nanoplatelets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this project we developed conductive thermoplastic resins by adding varying amounts of three different carbon fillers: carbon black (CB), synthetic graphite (SG) and multi-walled carbon nanotubes (CNT) to a polypropylene matrix for application as fuel cell bipolar plates. This component of fuel cells provides mechanical support to the stack, circulates the gases that participate in the electrochemical reaction within the fuel cell and allows for removal of the excess heat from the system. The materials fabricated in this work were tested to determine their mechanical and thermal properties. These materials were produced by adding varying amounts of single carbon fillers to a polypropylene matrix (2.5 to 15 wt.% Ketjenblack EC-600 JD carbon black, 10 to 80 wt.% Asbury Carbon's Thermocarb TC-300 synthetic graphite, and 2.5 to 15 wt.% of Hyperion Catalysis International's FIBRILTM multi-walled carbon nanotubes) In addition, composite materials containing combinations of these three fillers were produced. The thermal conductivity results showed an increase in both through-plane and in-plane thermal conductivities, with the largest increase observed for synthetic graphite. The Department of Energy (DOE) had previously set a thermal conductivity goal of 20 W/m·K, which was surpassed by formulations containing 75 wt.% and 80 wt.% SG, yielding in-plane thermal conductivity values of 24.4 W/m·K and 33.6 W/m·K, respectively. In addition, composites containing 2.5 wt.% CB, 65 wt.% SG, and 6 wt.% CNT in PP had an in–plane thermal conductivity of 37 W/m·K. Flexural and tensile tests were conducted. All composite formulations exceeded the flexural strength target of 25 MPa set by DOE. The tensile and flexural modulus of the composites increased with higher concentration of carbon fillers. Carbon black and synthetic graphite caused a decrease in the tensile and flexural strengths of the composites. However, carbon nanotubes increased the composite tensile and flexural strengths. Mathematical models were applied to estimate through-plane and in-plane thermal conductivities of single and multiple filler formulations, and tensile modulus of single-filler formulations. For thermal conductivity, Nielsen's model yielded accurate thermal conductivity values when compared to experimental results obtained through the Flash method. For prediction of tensile modulus Nielsen's model yielded the smallest error between the predicted and experimental values. The second part of this project consisted of the development of a curriculum in Fuel Cell and Hydrogen Technologies to address different educational barriers identified by the Department of Energy. By the creation of new courses and enterprise programs in the areas of fuel cells and the use of hydrogen as an energy carrier, we introduced engineering students to the new technologies, policies and challenges present with this alternative energy. Feedback provided by students participating in these courses and enterprise programs indicate positive acceptance of the different educational tools. Results obtained from a survey applied to students after participating in these courses showed an increase in the knowledge and awareness of energy fundamentals, which indicates the modules developed in this project are effective in introducing students to alternative energy sources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The primary challenge in groundwater and contaminant transport modeling is obtaining the data needed for constructing, calibrating and testing the models. Large amounts of data are necessary for describing the hydrostratigraphy in areas with complex geology. Increasingly states are making spatial data available that can be used for input to groundwater flow models. The appropriateness of this data for large-scale flow systems has not been tested. This study focuses on modeling a plume of 1,4-dioxane in a heterogeneous aquifer system in Scio Township, Washtenaw County, Michigan. The analysis consisted of: (1) characterization of hydrogeology of the area and construction of a conceptual model based on publicly available spatial data, (2) development and calibration of a regional flow model for the site, (3) conversion of the regional model to a more highly resolved local model, (4) simulation of the dioxane plume, and (5) evaluation of the model's ability to simulate field data and estimation of the possible dioxane sources and subsequent migration until maximum concentrations are at or below the Michigan Department of Environmental Quality's residential cleanup standard for groundwater (85 ppb). MODFLOW-2000 and MT3D programs were utilized to simulate the groundwater flow and the development and movement of the 1, 4-dioxane plume, respectively. MODFLOW simulates transient groundwater flow in a quasi-3-dimensional sense, subject to a variety of boundary conditions that can simulate recharge, pumping, and surface-/groundwater interactions. MT3D simulates solute advection with groundwater flow (using the flow solution from MODFLOW), dispersion, source/sink mixing, and chemical reaction of contaminants. This modeling approach was successful at simulating the groundwater flows by calibrating recharge and hydraulic conductivities. The plume transport was adequately simulated using literature dispersivity and sorption coefficients, although the plume geometries were not well constrained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The research reported in this dissertation investigates the impact of grain boundaries, film interface, and crystallographic orientation on the ionic conductivity of thin film Gd-doped CeO2 (GDC). Chapter 2 of this work addresses claims in the literature that submicron grain boundaries have the potential to dramatically increase the ionic conductivity of GDC films. Unambiguous testing of this claim requires directly comparing the ionic conductivity of single-crystal GDC films to films that are identical except for the presence of submicron grain boundaries. In this work techniques have been developed to grow GDC films by RF magnetron sputtering from a GDC target on single crystal r plane sapphire substrates. These techniques allow the growth of films that are single crystals or polycrystalline with 80 nm diameter grains. The ionic conductivities of these films have been measured and the data shows that the ionic conductivity of single crystal GDC is greater than that of the polycrystalline films by more than a factor of 4 over the 400-700°C temperature range. Chapter 3 of this work investigates the ionic conductivity of surface and interface regions of thin film Gd-doped CeO2. In this study, single crystal GDC films have been grown to thicknesses varying from 20 to 500 nm and their conductivities have been measured in the 500-700°C temperature range. Decreasing conductivity with decreasing film thickness was observed. Analysis of the conductivity data is consistent with the presence of an approximately 50 nm layer of less conductive material in every film. This study concludes that the surface and interface regions of thin film GDC are less conductive than the bulk single crystal regions, rather than being highly conductive paths. Chapter 4 of this work investigates the ionic conductivity of thin film Gd-doped CeO2 (GDC) as a function of crystallographic orientation. A theoretical expression has been developed for the ionic conductivity of the [100] and [110] directions in single crystal GDC. This relationship is compared to experimental data collected from a single crystal GDC film. The film was grown to a thickness of _300 nm and its conductivity measured along the [100] and [110] orientations in the 500-700°C temperature range. The experimental data shows no statistically significant difference in the conductivities of the [100] and [110] directions in single crystal GDC. This result agrees with the theoretical model which predicts no difference between the conductivities of the two directions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanoparticles are fascinating where physical and optical properties are related to size. Highly controllable synthesis methods and nanoparticle assembly are essential [6] for highly innovative technological applications. Among nanoparticles, nonhomogeneous core-shell nanoparticles (CSnp) have new properties that arise when varying the relative dimensions of the core and the shell. This CSnp structure enables various optical resonances, and engineered energy barriers, in addition to the high charge to surface ratio. Assembly of homogeneous nanoparticles into functional structures has become ubiquitous in biosensors (i.e. optical labeling) [7, 8], nanocoatings [9-13], and electrical circuits [14, 15]. Limited nonhomogenous nanoparticle assembly has only been explored. Many conventional nanoparticle assembly methods exist, but this work explores dielectrophoresis (DEP) as a new method. DEP is particle polarization via non-uniform electric fields while suspended in conductive fluids. Most prior DEP efforts involve microscale particles. Prior work on core-shell nanoparticle assemblies and separately, nanoparticle characterizations with dielectrophoresis and electrorotation [2-5], did not systematically explore particle size, dielectric properties (permittivity and electrical conductivity), shell thickness, particle concentration, medium conductivity, and frequency. This work is the first, to the best of our knowledge, to systematically examine these dielectrophoretic properties for core-shell nanoparticles. Further, we conduct a parametric fitting to traditional core-shell models. These biocompatible core-shell nanoparticles were studied to fill a knowledge gap in the DEP field. Experimental results (chapter 5) first examine medium conductivity, size and shell material dependencies of dielectrophoretic behaviors of spherical CSnp into 2D and 3D particle-assemblies. Chitosan (amino sugar) and poly-L-lysine (amino acid, PLL) CSnp shell materials were custom synthesized around a hollow (gas) core by utilizing a phospholipid micelle around a volatile fluid templating for the shell material; this approach proves to be novel and distinct from conventional core-shell models wherein a conductive core is coated with an insulative shell. Experiments were conducted within a 100 nl chamber housing 100 um wide Ti/Au quadrapole electrodes spaced 25 um apart. Frequencies from 100kHz to 80MHz at fixed local field of 5Vpp were tested with 10-5 and 10-3 S/m medium conductivities for 25 seconds. Dielectrophoretic responses of ~220 and 340(or ~400) nm chitosan or PLL CSnp were compiled as a function of medium conductivity, size and shell material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Medical microdevices have gained popularity in the past few decades because they allow the medical laboratory to be taken out into the field and for disease diagnostics to happen with a smaller sample volume, at a lower cost and much faster. Blood is the human body's most readily available and informative diagnostic fluid because of the wealth of information it provides about the body's general health including enzymatic, proteomic and immunological states. The purpose of this project is to optimize operating conditions and study ABO-Rh erythrocytes dielectrophoretic responses to alternating current electric signals. The end goal of this project is the creation of a relatively inexpensive microfluidic device, which can be used for the ABO-Rh typing of a blood sample. This dissertation presents results showing how blood samples of a known ABO- Rh blood type exhibit differing behavior to the same electrical stimulus based on their blood type. The first panel of donors and experiments, presented in Chapter 4 occurred when a sample of known blood type was injected into a microdevice with a T-shaped electrode configuration and the erythorcytes were found to rupture at a rate specific to their ABO-Rh blood type. The second set of experiments, presented in Chapter 5, were originally published in Electrophoresis in 20111. Novel in this work was the discovery that treatment of human erythrocytes with β-galactosidase successfully removed ABO surface antigens such that native A and B blood no longer agglutinated with the proper antibodies. This work was performed in a medium of conductivity 0.9S/m which is close to the measured conductivity of pooled plasma (~1.1S/m). The ability to perform dielectrophoresis experiments at physiological conductivities conditions is advantageous for future portable devices because the device/instrument would not need to store dilution buffers. The final results of this project, presented in Chapter 6, explore the entire dielectrophoretic spectra of the ABO-Rh erythrocytes including the cross-over frequency and the magnitudes of the positive or negative dielectrophoretic response. These were completed at lower medium conductivities of 0.1S/m and 0.01-0.04S/m. These results show that by using the sweep function built into the Agilent alternating current generator it is possible to explore how a single group of blood cells will react to rapid changes in frequency and will provide the user with curve that can be matched the theoretical dielectrophoretic response curves. As a whole this project shows that it is possible to distinguish human erythrocytes by their ABO-Rh blood type via three different dielectrophoretic methods. This work builds on the foundation of that it is possible to distinguish healthy from infected cells2-7, similar cell types1,7-14 and other work regarding the dielectrophoresis of human erythrocytes1,10,11. This work has implications in both medical diagnostics and future dielectrophoretic work because it has shown that ABO-Rh blood type is now a factor, which must be identified when working with a human blood sample. It also shows that the creation of a microfluidic device that subjects human erythrocytes to a dielectrophoretic impulse and then exports an ABO-Rh blood type is a near future possibility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Opalinus Clay formation in North Switzerland is a potential host rock for a deep underground radioactive waste repository. The distribution of U-238, U-234 and Th-230 was studied in rock samples of the Opalinus Clay from an exploratory borehole at Benken (Canton of Zurich) using MC-ICP-MS. The aim of U-234 was to assess the in situ, long-term migration behaviour in this rock. Very low hydraulic conductivities of the Opalinus Clay, reducing potential of the pore water and its chemical equilibrium with the host rock are expected to render both U-238 and Th-230 immobile. If U is heterogeneously distributed in the Opalinus Clay, gradients in the supply of U-234 from the rock matrix to the pore water by the decay of U-238 will be established. Diffusive redistribution separates U-234 from its immobile parent U-238 resulting in bulk rock U-234/U-238 activity disequilibria. These may provide a means of estimating the mobility of U-234 in the rock if the diffusion rate of U-234 is significant compared to its decay rate. Sampling was carried out on two scales. Drilling of cm-spaced samples from the drill-core was done to study mobility over short distances and elucidate possible small-scale lithological control. Homogenized 25-cm-long portions of a 2-m-long drill-core section were prepared to provide information on transport over a longer distance. Variations in U and/or Th content on the cm-scale between clays and carbonate-sandy layers are revealed by beta-scanning, which shows that the (dominant) clay is richer in both elements. Samples were digested using aqua regia followed by total HF dissolution, yielding two fractions. in all studied samples U was found to be concentrated in the HF digestion fraction. It has a high U/Th ratio and a study by SEM-EDS points to sub-mu m up to several mu m in size zircon grains as the main U-rich phase. This fraction consistently has U-234/U-238 activity ratios below unity. The minute zircon grains constitute the major reservoir of U in the rock and act as constant rate suppliers of U-234 into the rock matrix and the pore water. The aqua regia leach fraction was found to be enriched in Th, and complementary to the HF fraction, having U-234/U-238 activity ratios above unity. It is believed that these U activity ratios reflect the surplus of having U-234 delivered from the zircon grains. Some cm-spaced samples show bulk rock U-234/U-238 activity ratios that are markedly out of equilibrium. In most of them a striking negative correlation between the total U content and the bulk rock U-234/U-238 activity ratios is observed. This is interpreted to indicate net U-234 transfer from regions of higher supply of U-234 towards those of lower supply which is, in most cases, equivalent to transfer from clayey towards carbonate/sandy portions of the rock. In contrast, the 25 cm averaged samples all have uniform bulk rock U-234/U-238 activity ratios in equilibrium, indicating U immobility in the last 1-1.5 Ma on this spatial scale. It is concluded that the small-scale lithological variations which govern U spatial distribution in the Opalinus Clay are the major factor determining U-234 in situ supply rates, regulating its diffusive fluxes and controlling the observed bulk rock U-234/U-238 activity ratios. A simple box-model is presented to simulate the measured bulk rock U-234/U-238 activity ratios and to give an additional insight into the studied system. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-pressure mechanical squeezing was applied to sample pore waters from a sequence of highly indurated and overconsolidated sedimentary rocks in a drillcore from a deep borehole in NE Switzerland. The rocks are generally rich in clay minerals (28–71 wt.%), with low water contents of 3.5–5.6 wt.%, resulting in extremely low hydraulic conductivities of 10− 14–10− 13 m/s. First pore-water samples could generally be taken at 200 MPa, and further aliquots were obtained at 300, 400 and 500 MPa. Chemical and isotopic compositions of squeezed waters evolve with increasing pressure. Decreasing concentrations of Cl−, Br−, Na+ and K+ are explained by ion filtration due to the collapse of the pore space during squeezing. Increasing concentrations of Ca2 + and Mg2 + are considered to be a consequence of pressure-dependent solubilities of carbonate minerals in combination with sorption/desorption reactions. The pressure dependence was studied by model calculations considering equilibrium with carbonate minerals and the exchanger population on clay surfaces, and the trends observed in the experiments could be confirmed. The compositions of the squeezed waters were compared with results of independent methods, such as aqueous extraction and in-situ sampling of ground and pore waters. On this basis, it is concluded that the chemical and isotopic composition of pore water squeezed at the lowest pressure of 200 MPa closely represents that of the in-situ pore water. The feasibility of sampling pore waters with water contents down to 3.5 wt.% and possibly less opens new perspectives for studies targeted at palaeo-hydrogeological investigations using pore-water compositions in aquitards as geochemical archives.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cape Roberts drillhole CRP-3 in the northern part of McMurdo Sound (Ross Sea, Antarctica) targeted the western margin of the Victoria Land basin to investigate Neogene to Palaeogene climatic and tectonic history by obtaining continuous core and downhole logs (Cape Roberts Science Team, 2000). The CRP-3 drillhole extended to 939.42 mbsf (meters below seafloor) at a water depth of 297 m. The first downhole measurements after drilling were the temperature and salinity logs. Both were measured at the beginning and at the end of each of the three logging phases. Although an equilibrium temperature state may not have been fully reached after drilling, the temperature and salinity profiles seem to be scarcely disturbed. The average overall temperature gradient calculated from all temperature measurements is 28.5 K/km; remarkably lower than the temperature gradients found in other boreholes in the western Ross See and the Transantarctic Mountains. Anomalies in the salinity profiles at the beginning of each logging phase were no longer present at the end of the corresponding logging phase. This pattern indicates that drilling mud invaded the formation during drilling operations and flowed back into the borehole after drilling ceased. Thus, zones of temperature and salinity anomalies identify permeable zones in the formation and may be pathways for fluid flow. Radiogenic heat production, calculated from the radionuclide contents, is relatively low, with average values between 0.5 and 1.0 pW/m3. The highest values (up to 2 µW/m3) were obtained for the lower part of the Beacon Sandstone below 855 mbsf. The heat flow component due to radiogenic heat production integrated over the entire borehole is 0.7 mW/m2. Thermal conductivities range from 1.3 to 3 W/mK with an average value of 2.1 W/mK over the Tertiary section. Together with the average temperature gradient of 28.5 K/km this yields an average heat flow value of 60 mW/m2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ice shelves strongly impact coastal Antarctic sea-ice and the associated ecosystem through the formation of a sub-sea-ice platelet layer. Although progress has been made in determining and understanding its spatio-temporal variability based on point measurements, an investigation of this phenomenon on a larger scale remains a challenge due to logistical constraints and a lack of suitable methodology. In this study, we applied a laterally-constrained Marquardt-Levenberg inversion to a unique multi-frequency electromagnetic (EM) induction sounding dataset obtained on the landfast sea ice of Atka Bay, eastern Weddell Sea, in 2012. In addition to consistent fast-ice thickness and -conductivities along > 100 km transects; we present the first comprehensive, high resolution platelet-layer thickness and -conductivity dataset recorded on Antarctic sea ice. The reliability of the algorithm was confirmed by using synthetic data, and the inverted platelet-layer thicknesses agreed within the data uncertainty to drill-hole measurements. Ice-volume fractions were calculated from platelet-layer conductivities, revealing that an older and thicker platelet layer is denser and more compacted than a loosely attached, young platelet layer. The overall platelet-layer volume below Atka Bay fast ice suggests that the contribution of ocean/ice-shelf interaction to sea-ice volume in this region is even higher than previously thought. This study also implies that multi-frequency EM induction sounding is an effective approach in determining platelet layer volume on a larger scale than previously feasible. When applied to airborne multi-frequency EM, this method could provide a step towards an Antarctic-wide quantification of ocean/ice-shelf interaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The diatom flora of three lakes in the ice-free Amery Oasis, East Antarctica, was studied. Two of the lakes are meltwater reservoirs, Terrasovoje Lake (31 m depth) and Radok Lake (362 m depth), while Beaver Lake (>435 m depth) is an epishelf lake. The lakes can be characterized as cold, ultra-oligotrophic and alkaline, displaying moderate (Radok and Terrasovoje lakes) to high (Beaver Lake) conductivities. There was no diatom phytoplankton present in any of the three lakes. While 34 benthic diatom taxa were identified from modern and Holocene sediments of Terrasovoje and Radok lakes, a 30-cm long sediment core recovered in Beaver Lake was barren. Five species (Luticola muticopsis, Muelleria peraustralis, Pinnularia cymatopleura, Psammothidium metakryophilum, P. stauroneioides) are endemic to the Antarctic region. All identified taxa are photographically documented and brief notes on their taxonomy, biogeography and ecology are provided. The most abundant diatom taxa are Amphora veneta, Craticula cf. molesta, Diadesmis spp, M. peraustralis and Stauroneis anceps. This is the first report on the diatom flora in lakes of the Amery Oasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The summer water balance of a typical Siberian polygonal tundra catchment is investigated in order to identify the spatial and temporal dynamics of its main hydrological processes. The results show that, besides precipitation and evapotranspiration, lateral flow considerably influences the site-specific hydrological conditions. The prominent microtopography of the polygonal tundra strongly controls lateral flow and storage behaviour of the investigated catchment. Intact rims of low-centred polygons build hydrological barriers, which release storage water later in summer than polygons with degraded rims and troughs above degraded ice wedges. The barrier function of rims is strongly controlled by soil thaw, which opens new subsurface flow paths and increases subsurface hydrological connectivity. Therefore, soil thaw dynamics determine the magnitude and timing of subsurface outflow and the redistribution of storage within the catchment. Hydraulic conductivities in the elevated polygonal rims sharply decrease with the transition from organic to mineral layers. This interface causes a rapid shallow subsurface drainage of rainwater towards the depressed polygon centres and troughs. The re-release of storage water from the centres through deeper and less conductive layers helps maintain a high water table in the surface drainage network of troughs throughout the summer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A generalized Lévêque solution is presented for the conjugate fluid–fluid problem that arises in the thermal entrance region of laminar counterflow heat exchangers. The analysis, carried out for constant property fluids, assumes that the Prandtl and Peclet numbers are both large compared to unity, and neglects axial conduction both in the fluids and in the plate, assumed to be thermally thin. Under these conditions, the thermal entrance region admits an asymptotic self-similar description where the temperature varies as a power ϳ of the axial distance, with the particularity that the self-similarity exponent must be determined as an eigenvalue by solving a transcendental equation arising from the requirement of continuity of heat fluxes at the heat conducting wall. Specifically, the analysis reveals that j depends only on the lumped parameter ƙ = (A2/A1)1/3 (α1/α2)1/3(k2/k1), defined in terms of the ratios of the wall velocity gradients, A, thermal diffusivities, α i, and thermal conductivities,k i, of the fluids entering, 1, and exiting, 2, the heat exchanger. Moreover, it is shown that for large (small) values of K solution reduces to the classical first (second) Lévêque solution. Closed-form analytical expressions for the asymptotic temperature distributions and local heat-transfer rate in the thermal entrance region are given and compared with numerical results in the counterflow parallel-plate configuration, showing very good agreement in all cases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El objetivo general de la presente Tesis es identificar algunas de las características anatómico-fisiológicas que confieren la capacidad de alcanzar una mejor productividad bajo clima mediterráneo a plantas de diversos genotipos de los géneros Populus y Eucalyptus, caracterizados por su carácter pionero, elevado crecimiento y vulnerabilidad a la cavitación. En los dos primeros capítulos se hace un seguimiento de la conductancia estomática a una selección de clones de eucalipto cultivados en invernadero, sometidos a diferentes dotaciones hídricas. Se realizaron además mediciones periódicas del pH de la savia del tallo y de la pérdida de conductividad hidráulica para investigar su implicación en la regulación química e hidraúlica del cierre estomático. Las variaciones en el pH de la savia obtenidas parecen responder a cambios en el déficit de presión de vapor de agua atmosférico y no a diferencias en la disponibilidad de agua en el suelo. La conductancia estomática presentó una correlación positiva significativa con el pH de la savia, pero no con la conductividad hidráulica. La variabilidad de la conductividad hidráulica máxima se discute a la luz de recientes investigaciones sobre los materiales constituyentes de las membranas de las punteaduras. Los clones que mostraron mayores conductancias hidráulicas y estomáticas presentaron valores más altos de producción y supervivencia, poniendo de manifiesto la utilidad del estudio de estas variables. Por el contrario, los valores más bajos de conductancia estomática e hidraúlica se encontraron en clones que han resultado un fracaso en plantaciones comerciales, en particular, fue destacable el mal resultado de un clon procedente de autocruzamiento respecto de otros híbridos. En el tercer capítulo de la tesis se estudian características anatómicas y funcionales del xilema relacionadas con la eficiencia en el transporte de agua a las hojas, y que pueden afectar directa o indirectamente a la transpiración y al crecimiento. Los estudios anatómicos fueron realizados sobre brotes anuales de chopo en una plantación situada en Granada, en condiciones de riego limitante. La combinación de rasgos anatómicos más favorable de cara a la producción de biomasa fue una densidad alta de vasos de diámetro intermedio. Los clones más productivos figuraron entre los más resistentes a la cavitación. Para estudiar el crecimiento de masas arboladas se utilizan frecuentemente parámetros fisiológicos como el índice de area foliar (LAI). La estimación del LAI a partir de fotografías hemisféricas aplicada a tallares de chopo plantados a alta densidad y a turno corto para biomasa se lleva a cabo mediante una metodología reciente empleada y discutida en el cuarto capítulo de la Tesis. Los resultados muestran que las diferencias de producción existentes entre genotipos, localidades de medición con diferentes dosis de riego, y años, pueden predecirse a partir de la determinación del índice de área foliar tanto por métodos directos como indirectos de estimación. Tanto los estudios realizados en eucalipto como en chopo han mostrado que los genotipos con menores producciones de biomasa en campo alcanzaron los menores valores de conductancia estomática en las condiciones más favorables así como el menor número de vasos en el xilema. La estrecha relación entre crecimiento y LAI confirma una vez más la importancia del desarrollo de la copa para sostener un buen crecimiento. El mayor desarrollo de la copa y rendimiento en biomasa se midieron en uno de los clones con un número de vasos más elevado, y menor vulnerabilidad a la cavitación en condiciones de estrés. Estos resultados ponen de manifiesto la importancia de las características anatómicas y funcionales del xilema como condicionantes del patrón de crecimiento de las plantas y el comportamiento de los estomas. ABSTRACT A number of anatomical xylem traits and physiological variables were analyzed in genotypes of both the Populus and Eucalyptus genera with the main aim of identifying traits in the genotypes which confer the ability to produce an acceptable biomass yield under Mediterranean climatic conditions. In the first two chapters of this PhD, the results of two experiments carried out on several clones of the species Eucalyptus globulus Labill. are presented. Chapters three and four include the results of another two trials on four poplar hybrid genotypes. One of the initial plant responses to water stress is stomatal closure, which can be triggered by hydraulic and/or chemical signals. The two first chapters of this PhD deal with trials in which stomatal conductance and percentage loss of hydraulic conductivity were monitored on a set of eucalyptus clones supplied by ENCE (former National Cellulose Company) and currently used in the company’s own commercial plantings. The experimental trials were carried out in greenhouses and the plants were submitted to two different watering regimes. The pH of the stem sap was periodically measured as the greenhouse temperature and humidity changed. The aim of these measurements was to investigate the role of both sap pH and percentage loss of hydraulic conductivity on stomatal regulation. The results obtained suggest that changes in sap pH are a response to vapor pressure deficit changes rather than to differences in soil water availability. We found significant correlation between stomatal conductance and sap pH, although no significant relationship was found between stomatal conductance and hydraulic conductivity. Variability in maximum hydraulic conductivity is discussed based on recent pit membrane constituent research. The study of hydraulic conductivity proved helpful in order to detect the clones with both higher growth and greater chance of survival, since clones displaying the lowest hydraulic conductivities were those that failed in commercial plantings. Anatomical xylem traits define the water transport efficiency to leaves and can therefore limit transpiration and growth. The third chapter of this PhD addresses anatomical xylem traits in poplar. One year old stem samples were taken from a water-stressed trial in Granada. The anatomical xylem study proved useful for detecting the lowest yielding genotypes. Clones with intermediate vessel size and high vessel densities were found to be those with the highest biomass yield. Differences in cavitation resistance depending on the clone tested and the water treatment applied were also found. The clones with the highest biomass yield were found to be among the most cavitation resistant clones in each watering regime. Xylem and physiological traits along with stomatal behavior are useful tools to determine plant growth. In order to study plantings or forests, it is more common to employ other physiological variables such as leaf area index (LAI). LAI estimation from hemispherical photographs applied to short rotation woody crops is a recently developed method that still requires fine tuning through further investigation. In the fourth chapter, data from LAI monitoring over two consecutive years were analyzed in two different locations where different irrigation treatments were applied. The results showed that differences in yield between genotypes, different irrigation regimes and years could be predicted by using the LAI estimates, either through direct or indirect estimation methods. Our studies of poplar and eucalyptus have shown that the field-grown genotypes with the lowest biomass yield displayed the lowest values of stomatal conductance under the most favorable environmental conditions and also had a low number of xylem conduits. The close relationship between LAI and growth highlights the importance of crown development in biomass growth. The highest LAI and biomass yield were recorded in one of the clones with higher vessel density and the lowest vulnerability to cavitation under stress conditions. These results underline the importance of research into anatomical and functional traits as factors influencing plant growth patterns and stomatal behavior.