924 resultados para NADPH cytochrome c reductase
Resumo:
A protein analog of a purple copper center has been constructed from a recombinant blue copper protein (Pseudomonas aeruginosa azurin) by replacing the loop containing the three ligands to the blue copper center with the corresponding loop of the CuA center in cytochrome c oxidase (COX) from Paracoccus denitrificans. The electronic absorption in the UV and visible region (UV-vis) and electron paramagnetic resonance (EPR) spectra of this analog are remarkably similar to those of the native CuA center in COX from Paracoccus denitrificans. The above spectra can be obtained upon addition of a mixture of Cu2+ and Cu+. Addition of Cu2+ only results in a UV-vis spectrum consisting of absorptions from both a purple copper center and a blue copper center. This spectrum can be converted to the spectrum of a pure purple copper by a prolonged incubation in the air, or by addition of excess ascorbate. The azurin mutant reported here is an example of an engineered purple copper center with the A480/A530 ratio greater than 1 and with no detectable hyperfines, similar to those of the CuA sites in COX of bovine heart and of Paracoccus denitrificans.
Resumo:
Direct evidence is presented in support of the longstanding but unproven hypothesis that B lymphocytes specific for self antigens (Ags) can be used in the immune response to foreign Ags. We show that the B cells in BALB/c mic responding early to pigeon cytochrome c (CYT) produce antibodies that recognize and bind the major antigenic site on mouse CYT with greater affinity than they bind pigeon CYT i.e., they are heteroclitic for the self Ag. Furthermore, these B cells express the same combination of immunoglobulin variable region (V) genes that are known to be used in B-cell recognition of mouse CYT. Over time, the response to pigeon CYT becomes more specific for the foreign Ag through the recruitment of B cells expressing different combinations of V genes and, possibly, somatic mutation of the mouse CYT specific B cells from early in the response. Cross-recognition of pigeon CYT by mouse CYT-specific B cells results from the sharing of critical amino acid residues by the two Ags. Although B-cell recognition of the self Ag, mouse CYT, is very specific, which limits the extent to which foreign Ags can cross-activate the autoreactive B cells, it is possible that polyreactive B cells to other self Ags may be used more frequently in response to foreign Ags.
Resumo:
Radiolabel from [3H]myristic acid was incorporated by Neurospora crassa into the core catalytic subunit 1 of cytochrome c oxidase (EC 1.9.3.1), as indicated by immunoprecipitation. This modification of the subunit, which was specific for myristic acid, represents an uncommon type of myristoylation through an amide linkage at an internal lysine, rather than an N-terminal glycine. The [3H]myristate, which was chemically recovered from the radiolabeled subunit peptide, modified an invariant Lys-324, based upon analyses of proteolysis products. This myristoylated lysine is found within one of the predicted transmembrane helices of subunit 1 and could contribute to the environment of the active site of the enzyme. The myristate was identified by mass spectrometry as a component of mature subunit 1 of a catalytically active, purified enzyme. To our knowledge, fatty acylation of a mitochondrially synthesized inner-membrane protein has not been reported previously.
Resumo:
The electronic structure and spectrum of several models of the binuclear metal site in soluble CuA domains of cytochrome-c oxidase have been calculated by the use of an extended version of the complete neglect of differential overlap/spectroscopic method. The experimental spectra have two strong transitions of nearly equal intensity around 500 nm and a near-IR transition close to 800 nm. The model that best reproduces these features consists of a dimer of two blue (type 1) copper centers, in which each Cu atom replaces the missing imidazole on the other Cu atom. Thus, both Cu atoms have one cysteine sulfur atom and one imidazole nitrogen atom as ligands, and there are no bridging ligands but a direct Cu-Cu bond. According to the calculations, the two strong bands in the visible region originate from exciton coupling of the dipoles of the two copper monomers, and the near-IR band is a charge-transfer transition between the two Cu atoms. The known amino acid sequence has been used to construct a molecular model of the CuA site by the use of a template and energy minimization. In this model, the two ligand cysteine residues are in one turn of an alpha-helix, whereas one ligand histidine is in a loop following this helix and the other one is in a beta-strand.
Resumo:
The level and structure of yeast iso-1-cytochrome c and iso-2-cytochrome c, encoded by the nuclear genes CYC1 and CYC7, respectively, are normally not altered in rho- mutants, which completely lack the cytochromes a.a3 subunits and cytochrome b that are encoded by mitochondrial DNA. In contrast, iso-cytochromes c containing the amino acid change Thr-78-->Ile (T78I) were observed at the normal or near-normal wild-type level in rho+ strains but were completely absent in rho- mutants. We have demonstrated with the "global" suppressor mutation Asn-52-->Ile and by pulse-chase labeling that the T78I iso-1-cytochrome c undergoes rapid cellular degradation in rho- mutants. Furthermore, specific mutations revealed that the deficiency of T78I iso-1 cytochrome c can be caused by the lack of cytochrome a.a3 or cytochrome c1, but not by the lack of cytochrome b. Thus, this and certain other, but not all, labile forms of cytochrome c are protected from degradation by the interaction with its physiological partners.
Resumo:
Of the microsomal P450 cytochromes, the ethanol-inducible isoform, P450 2E1, is believed to be predominant in leading to oxidative damage, including the generation of radical species that contribute to lipid peroxidation, and in the reductive beta-scission of lipid hydroperoxides to give hydrocarbons and aldehydes. In the present study, the sensitivity of a series of P450s to trans-4-hydroxy-2-nonenal (HNE), a known toxic product of membrane lipid peroxidation, was determined. After incubation of a purified cytochrome with HNE, the other components of the reconstituted system (NADPH-cytochrome P450 reductase, phosphatidylcholine, and NADPH) were added, and the rate of oxygenation of 1-phenylethanol to yield acetophenone was assayed. Inactivation occurs in a time-dependent and HNE concentration-dependent manner, with P450s 2E1 and 1A1 being the most sensitive, followed by isoforms 1A2, 3A6, and 2B4. At an HNE concentration of 0.24 microM, which was close to the micromolar concentration of the enzyme, four of the isoforms were significantly inhibited, but not P450 2B4. In other experiments, the reductase was shown to be only relatively weakly inactivated by HNE. P450s 2E1 and 2B4 in microsomal membranes from animals induced with acetone or phenobarbital, respectively, are as readily inhibited as the purified forms. Evidence was obtained that the P450 heme is apparently not altered and the sulfur ligand is not displaced, that substrate protects against HNE, and that the inactivation is reversed upon dialysis. Higher levels of reductase or substrate do not restore the activity of inhibited P450 in the catalytic assay. Our results suggest that the observed inhibition of the various P450s is of sufficient magnitude to cause significant changes in the metabolism of foreign compounds such as drugs and chemical carcinogens by the P450 oxygenase system at HNE concentrations that occur in biological membranes. In view of the known activities of P450 2E1 in generating lipid hydroperoxides and in their beta-scission, its inhibition by this product of membrane peroxidation may provide a negative regulatory function.
Resumo:
Water is thought to play a dominant role in protein folding, yet gaseous multiply protonated proteins from which the water has been completely removed show hydrogen/deuterium (H/D) exchange behavior similar to that used to identify conformations in solution. Indicative of the gas-phase accessibility to D2O, multiply-charged (6+ to 17+) cytochrome c cations exchange at six (or more) distinct levels of 64 to 173 out of 198 exchangeable H atoms, with the 132 H level found at charge values 8+ to 17+. Infrared laser heating and fast collisions can apparently induce ions to unfold to exchange at a higher distinct level, while charge-stripping ions to lower charge values yields apparent folding as well as unfolding.
Resumo:
The direct electron transfer between indium–tin oxide electrodes (ITO) and cytochrome c encapsulated in different sol–gel silica networks was studied. Cyt c@silica modified electrodes were synthesized by a two-step encapsulation method mixing a phosphate buffer solution with dissolved cytochrome c and a silica sol prepared by the alcohol-free sol–gel route. These modified electrodes were characterized by cyclic voltammetry, UV–vis spectroscopy, and in situ UV–vis spectroelectrochemistry. The electrochemical response of encapsulated protein is influenced by the terminal groups of the silica pores. Cyt c does not present electrochemical response in conventional silica (hydroxyl terminated) or phenyl terminated silica. Direct electron transfer to encapsulated cytochrome c and ITO electrodes only takes place when the protein is encapsulated in methyl modified silica networks.
Resumo:
Cytochromes from the SoxAX family have a major role in thiosulfate oxidation via the thiosulfate-oxidizing multi-enzyme system (TOMES). Previously characterized SoxAX proteins from Rhodovulum sulficlophilum and Paracoccus pantotrophus contain three heme c groups, two of which are located on the SoxA subunit. In contrast, the SoxAX protein purified from Starkeya novella was found to contain only two heme groups. Mass spectrometry showed that a disulfide bond replaced the second heme group found in the diheme SoxA subunits. Apparent molecular masses of 27,229 +/- 10.3 Da and 20,258.6 +/- 1 Da were determined for SoxA and SoxX with an overall mass of 49.7 kDa, indicating a heterodimeric structure. Optical redox potentiometry found that the two heme cofactors are reduced at similar potentials (versus NHE) that are as follows: + 133 mV (pH 6.0); + 104 mV (pH 7.0); +49 (pH 7.9) and +10 mV (pH 8.7). EPR spectroscopy revealed that both ferric heme groups are in the low spin state, and the spectra were consistent with one heme having a His/Cys axial ligation and the other having a His/Met axial ligation. The His/Cys ligated heme is present in different conformational states and gives rise to three distinct signals. Amino acid sequencing was used to unambiguously assign the protein to the encoding genes, soxAX, which are part of a complete sox gene cluster found in S. novella. Phylogenetic analysis of soxA- and soxX-related gene sequences indicates a parallel development of SoxA and SoxY, with the diheme and monoheme SoxA sequences located on clearly separated branches of a phylogenetic tree.
Resumo:
Cytochrome c biogenesis in Escherichia coli is a complex process requiring at least eight genes (ccmABC DEFGH). One of these genes, ccmG, encodes a thioredoxin-like protein with unusually specific redox activity. Here, we investigate the basis for CcmG function and demonstrate the importance of acidic residues surrounding the redox-active center.
Cytochrome P450-mediated metabolism of haloperidol and reduced haloperidol to pyridinium metabolites
Resumo:
Haloperidol ( HP) has been reported to undergo cytochrome P450 (P450)-mediated metabolism to potentially neurotoxic pyridinium metabolites; however, the chemical pathways and specific enzymes involved in these reactions remain to be identified. The aims of the current study were to (i) fully identify the cytochrome P450 enzymes capable of metabolizing HP to the pyridinium metabolite, 4-(4-chlorophenyl)- 1-(4-fluorophenyl)-4-oxobutylpyridinium (HPP+), and reduced HP (RHP) to 4-(4-chlorophenyl)- 1-(4-fluorophenyl)-4-hydroxybutylpyridinium (RHPP+); and (ii) determine whether 4-(4-chlorophenyl)- 1-(4-fluorophenyl)-4-oxobutyl-1,2,3,6-tetrahydropyridine (HPTP) and 4-(4-chlorophenyl)1-( 4-fluorophenyl)-4-hydroxybutyl-1,2,3,6-tetrahydropyridine (RHPTP) were metabolic intermediates in these pathways. In vitro studies were conducted using human liver microsomal preparations and recombinant human cytochrome P450 enzymes (P450s 1A1, 1A2, 1B1, 2A6, 2B6, 2C9, 2C19 2D6, 2E1, 3A4, 3A5, and 3A7) expressed in bicistronic format with human NADPH cytochrome P450 reductase in Escherichia coli membranes. Pyridinium formation from HP and RHP was highly correlated across liver preparations, suggesting the same enzyme or enzymes were responsible for both reactions. Cytochrome P450s 3A4, 3A5, and 3A7 were the only recombinant enzymes which demonstrated significant catalytic activity under optimized conditions, although trace levels of activity could be catalyzed by NADPHP450 reductase alone. NADPH-P450 reductase-mediated activity was inhibited by reduced glutathione but not catalase or superoxide dismutase, suggesting O-2-dependent oxidation. No evidence was obtained to support the contention that HPTP and RHPTP are intermediates in these pathways. K-m values for HPP+ (34 +/- 5 mu M) and RHPP+ (64 +/- 4 mu M) formation by recombinant P450 3A4 agreed well with those obtained with human liver microsomes, consistent with P450 3A4 being the major catalyst of pyridinium metabolite formation in human liver.
Resumo:
Release of cytochrome c from mitochondria is a major event during apoptosis. Released cytochrome c has been shown to activate caspase-dependent apoptotic signals. In this report, we provide evidence for a novel role of cytochrome c in caspase-independent nuclear apoptosis. We showed that cytochrome c, released from mitochondria upon apoptosis induction, gradually accumulates in the nucleus as evidenced by both immunofluorescence and subcellular fractionation. Parallel to nuclear accumulation of cytochrome c, acetylated histone H2A, but not unmodified H2A, was released from the nucleus to the cytoplasm. Addition of purified cytochrome c to isolated nuclei recapitulated the preferential release of acetylated, but not deacetylated, histone H2A. Cytochrome c was also found to induce chromatin condensation. These results suggest that the nuclear accumulation of cytochrome c may be directly involved in the remodeling of chromatin. Our results provide evidence of a novel role for cytochrome c in inducing nuclear apoptosis.
Resumo:
One innovative thought in biomolecular electronics is the exploitation of electron transfer proteins. Using nature's self assembly techniques, proteins can build highly organized edifices with retained functional activity, and they can serve as platforms for biosensors. In this research work, Yeast Cytochrome C (YCC) is immobilized with a help of a linker molecule, 3-Mercaptopropyltrimethoxysilane (3-MPTS) on a hydroxylated surface of a silicon substrate. Atomic Force Microscopy (AFM) is used for characterization. AFM data shows immobilization of one YCC molecule in between eight grids that are formed by the linker molecules. 3-MPTS monolayers are organized in grids that are 1.2 nm apart. Immobilization of 3-MPTS was optimized using a concentration of 5 mM in a completely dehydrated state for 30 minutes. The functionally active grids of YCC can now be incorporated with Cytochrome C oxidase on a Platinum electrode surface for transfer of electrons in development of biosensors, such as nitrate sensor, that are small in size, cheaper, and easier to manufacture than the top-down approach of fabrication of molecular biodevices
Resumo:
Treatment of hepatocellular cancer with chemotherapeutic agents has limited successin clinical practice and their efficient IC50 concentration would require extremely highdoses of drug administration which could not be tolerated due to systemic side effects.In order to potentiate the efficacy of anticancer agents we explored the potentialof co-treatment with pro-apoptotic Cytochrome c which activates the apoptoticpathway downstream of p53 that is frequently mutated in cancer. To this end weused hybrid iron oxide-gold nanoparticles as a drug delivery system to facilitate theinternalisation of Cytochrome c into cultured HepG2 hepatocellular carcinoma cells.Our results showed that Cytochrome c can be easily conjugated to the gold shell ofthe nanoparticles which are readily taken up by the cells. We used Cytochrome cin concentration (0.2μgmL-1) below the threshold required to induce apoptosis onits own. When the conjugate was administered to cells treated by doxorubicin, itsignificantly reduced its IC50 concentration from 9μgmL-1 to 3.5μgmL-1 as detectedby cell viability assay, and the efficiency of doxorubicin on decreasing viability ofHepG2 cells was significantly enhanced in the lower concentration range between0.01μgmL-1 to 5μgmL-1. The results demonstrate the potential of the application oftherapeutic proteins in activating the apoptotic pathway to complement conventionalchemotherapy to increase its efficacy. The application of hybrid iron oxide-goldnanoparticles can also augment the specificity of drug targeting and could serve as amodel drug delivery system for pro-apoptotic protein targeting and delivery.
Resumo:
Adriamycin (Doxorubicin) stimulates NADH oxidase activity in liver plasma membrane, but does not cause NADH oxidase activity to appear where it is not initially present, as in erythrocyte membrane. NADH dehydrogenase from rat liver and erythrocyte plasma membranes shows similar adriamycin effects with other electron acceptors. Both NADH ferricyanide reductase and vanadate-stimulated NADH oxidation are inhibited by adriamycin, as is a cyanide insensitive ascorbate oxidase activity, whereas NADH cytochrome c reductase is not affected. The effects may contribute to the growth inhibitory (control) and/or deleterious effects of adriamycin. It is clear that adriamycin effects on the plasma membrane dehydrogenase involve more than a simple catalysis of superoxide formation.