825 resultados para Muscular Strength
Resumo:
Com o presente estudo pretendeu-se: (1) verificar se a ligadura funcional para a lesão da articulação Acrómio-Clavicular (AC), descrita por Chanussot e Danowski (2001), contribui para o restabelecimento da força muscular num paciente com lesão grau III; e, (2) observar se a ligadura funcional altera o padrão electromiográfico dos principais músculos superficiais do complexo articular do ombro: infra-espinhoso, deltóide anterior, grande peitoral, trapézio superior e trapézio inferior. Efectuou-se assim um estudo de caso do tipo observacional, descritivo transversal. Para avaliação da força muscular foi utilizado um dinamómetro isocinético e para a avaliação do nível de activação de fibras musculares foi utilizada a EMG de superfície. Os movimentos em análise foram os de rotação interna e externa, a 60º/s e 180º/s. Os resultados revelaram, na presença de ligadura, um aumento do Peak Torque dos rotadores internos, assim como da actividade do grande peitoral e trapézio inferior. Constatou-se ainda uma diminuição do Peak Torque e da percentagem do Root Mean Square do trapézio inferior, trapézio superior e grande peitoral, do ombro esquerdo, sem ligadura, quando comparado com o ombro contralateral. A ligadura funcional, numa entorse da acromio-clavicular grau III, poderá contribuir para a recuperação de força muscular e activação de fibras musculares.
Resumo:
Introdução: A sequência de activação e a actividade muscular, são importantes na coordenação do movimento da omoplata com a elevação do úmero. Objectivos: Avaliar sequência de activação, actividade e força de músculos do ombro comparando jogadores com/sem dor. Metodologia: Amostra de 15 atletas (7 - grupo experimental; 8 - grupo controlo). Avaliou-se electromiograficamente o Deltóide Anterior, Grande Peitoral, Trapézio Superior, Trapézio Inferior e Infra- Espinhoso na diagonal do Isocinético (90°/s; 180°/s). Resultados: Encontraram-se diferenças na sequência e tempos de activação; não havendo diferenças na actividade, peak torque e rácio antagonistas/agonistas. Conclusão: A dor crónica afectou sequência e tempos de activação muscular.
Resumo:
Introdução: Apesar dos muitos estudos sobre a temática da sensação retardada de desconforto muscular, atualmente, ainda se discute a explicação dos mecanismos subjacentes a esta condição clínica, bem como, a sua prevenção e tratamento. A literatura sugere a massagem como uma das formas de terapia, contudo, os estudos têm mostrado resultados controversos. Objetivo: Verificar se a massagem aplicada 2 horas após um protocolo de exercício excêntrico tem influência na sensação retardada de desconforto muscular, bem como, se o seu efeito varia dependendo do tempo de aplicação. Métodos: 21 participantes (23,62±1,32 anos; 76,95±12,17 kg; 174,71±4,78 cm; 25,25±4,26 Kg/m 2) foram divididos em três grupos. Foi avaliada a dor, força muscular e a perimetria antes, e 2h, 24h, 48h, e 72h após um protocolo de exercício constituído por três séries de dez repetições de contrações excêntricas dos isquiotibiais do membro dominante, com 80% da força máxima, a uma velocidade constante de 60º/s, numa amplitude entre 0º e 80º, utilizando o dinamómetro isocinético Biodex System 4. A massagem foi efetuada 2 horas após o exercício em dois grupos experimentais com durações diferentes, sendo o terceiro grupo de controlo. Para identificar diferenças entre os grupos no momento inicial e na variável diferença entre o momento inicial e os restantes momentos, recorreu-se ao teste de Kruskal-Wallis, seguido de uma análise Post-Hoc através do teste de Dunn com um nível de significância de 0,05. Resultados: Verificou-se que a massagem teve efeito na redução da dor e na perimetria. Relativamente à força não foram encontradas alterações significativas. Conclusão: Os resultados mostraram que a massagem aplicada 2 horas após o exercício excêntrico, independentemente da duração utilizada, teve efeito na redução da dor, mas não na força muscular. Na perimetria apesar de haver alterações, estas não foram consideradas relevantes.
Resumo:
The diagnosis of muscular dystrophies or the assessment of the functional benefit of gene or cell therapies can be difficult, especially for poorly accessible muscles, and it often lacks a singlefiber resolution. In the present study, we evaluated whether muscle diseases can be diagnosed from small biopsies using atomic force microscopy (AFM). AFM was shown to provide a sensitive and quantitative description of the resistance of normal and dystrophic myofibers within live muscle tissues explanted from Duchenne mdx mice. The rescue of dystrophin expression by gene therapy approaches led to the functional recovery of treated dystrophic muscle fibers, as probed using AFM and by in situ wholemuscle strength measurements. Comparison of muscles treated with viral or non-viral vectors indicated that the efficacy of the gene transfer approaches could be distinguished with a single myofiber resolution. This indicated full correction of the resistance to deformation in nearly all of the muscle fibers treated with an adeno-associated viral vector that mediates exon-skipping on the dystrophin mRNA. Having shown that AFM can provide a quantitative assessment of the expression of muscle proteins and of the muscular function in animal models, we assessed myofiber resistance in the context of human muscular dystrophies and myopathies. Thus, various forms of human Becker syndrome can also be detected using AFM in blind studies of small frozen biopsies from human patients. Interestingly, it also allowed the detection of anomalies in a fraction of the muscle fibers from patients showing a muscle weakness that could not be attributed to a known molecular or genetic defect. Overall, we conclude that AFM may provide a useful method to complement current diagnosis tools of known and unknown muscular diseases, in research and in a clinical context.
Resumo:
Multiple motor function and strength assessment tools exist for the evaluation of neuromuscular diseases, but most do not directly assess functional ability in the patients' daily physical activity in their home environment. In this study our aim was to assess: 1) the feasibility and accuracy of physical activity monitoring during two days in a home environment of five DMD patients using a non-commercialized monitor containing a 3D accelerometer and a gyroscope, 2) if a difference in the physical activity parameters could be measured before and one month after starting prednisolone. We reliably quantified the time spend sitting, standing, lying, walking, the number of steps taken, the cadence, the number of walking episodes and their duration as well as how these were distributed over the day. Parameters possibly reflecting endurance, such as the duration of the walking episodes or the succession of two or three walking episodes lasting more than 30 s were the most improved after prednisolone treatment. This degree of detailed determination of physical activity in a home environment has not been previously reported in neuromuscular disorders to our knowledge and some of the reported parameters are potential new outcome measures in clinical trials.
Resumo:
During maturation, muscle strength is enhanced through muscle growth, although neuro-muscular factors are also believed to be involved. In adults, training for power sports has been shown to enhance muscle strength and activation. The purpose of this study was to examine muscle strength and activation in power-trained athletes (POW) compared with non-athletes (CON), in boys and in adults. After familiarization subjects performed ten 5-s explosive maximal voluntary contractions for elbow and knee flexion and extension. The adults were stronger then the boys and the adult POW were stronger then the adult CON, even after correction for muscle size. Normalized rate of torque development was higher in the adults then in the boys and higher in the POW then CON boys. The rate of muscle activation was higher in the adults and POW groups. The results suggest that maturation and power-training have an additive effect on muscle activation.
Resumo:
Most research on the effects of endurance training has focused on endurance training's health-related benefits and metabolic effects in both children and adults. The purpose of this study was to examine the neuromuscular effects of endurance training and to investigate whether they differ in children (9.0-12.9 years) and adults (18.4-35.6 years). Maximal isometric torque, rate of torque development (RTD), rate of muscle activation (Q30), electromechanical delay (EMD), and time to peak torque and peak RTD were determined by isokinetic dynamometry and surface electromyography (EMG) in elbow and knee flexion and extension. The subjects were 12 endurance-trained and 16 untrained boys, and 15 endurance-trained and 20 untrained men. The adults displayed consistently higher peak torque, RTD, and Q30, in both absolute and normalized values, whereas the boys had longer EMD (64.7+/-17.1 vs. 56.6+/-15.4 ms) and time to peak RTD (98.5+/-32.1 vs. 80.4+/-15.0 ms for boys and men, respectively). Q30, normalized for peak EMG amplitude, was the only observed training effect (1.95+/-1.16 vs. 1.10+/-0.67 ms for trained and untrained men, respectively). This effect could not be shown in the boys. The findings show normalized muscle strength and rate of activation to be lower in children compared with adults, regardless of training status. Because the observed higher Q30 values were not matched by corresponding higher performance measures in the trained men, the functional and discriminatory significance of Q30 remains unclear. Endurance training does not appear to affect muscle strength or rate of force development in either men or boys.
Resumo:
Analizar comparativamente las características morfo-funcionales de las Unidades motoras reclutadas durante la realización de una RM en el músculo recto anterior (cuadriceps bilateral) en futbolistas entre 15 a 20 años del equipo de fútbol de la división sub-21 de Santa fe por medio de la electromiografia. La medición electromiográfica ha demostrado que el reclutamiento de fibras es mayor, en deportistas en comparación con personas sedentarias debido a que tienen un manejo diferente de la potencia, entendiendo esta como la integración de la velocidad con fuerza máxima, una cualidad determinante en cualquier tipo de salto, o cambios rápidos de dirección, como en la potencia de despegue, arranque, aceleración y/o desaceleración.
Resumo:
Comprender la fuerza como fenómeno fisiológico y mecánico es un elemento fundamental para aumentar el conocimiento de las técnicas y métodos de entrenamiento muscular basados en distintas formas de aplicar cargas de trabajo. En este sentido la fuerza muscular debe ser considerada como una cualidad física básica físico, de generar desplazamiento de los segmentos corporales o de vencer una resistencia se considera parte fundamental del Fitness físico, ya que se ha demostrado dentro de la evidencia científica sus beneficios para mantener y mejorar la condición de salud de las personas. El texto está divido en dos partes: la primera, presenta aspectos fisiológicos y mecánicos básicos del sistema músculo esquelético y la segunda, se centra en los distintos métodos de entrenamiento muscular; basados en esta propuesta conceptual lo estudiantes de pregrado podrán comprender de una manera sencilla los principios y métodos de entrenamiento de la fuerza.
Resumo:
Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disorder characterized by ptosis, dysphagia and proximal limb weakness. Autosomal-dominant OPMD is caused by a short (GCG)8–13 expansions within the first exon of the poly(A)-binding protein nuclear 1 gene (PABPN1), leading to an expanded polyalanine tract in the mutated protein. Expanded PABPN1 forms insoluble aggregates in the nuclei of skeletal muscle fibres. In order to gain insight into the different physiological processes affected in OPMD muscles, we have used a transgenic mouse model of OPMD (A17.1) and performed transcriptomic studies combined with a detailed phenotypic characterization of this model at three time points. The transcriptomic analysis revealed a massive gene deregulation in the A17.1 mice, among which we identified a significant deregulation of pathways associated with muscle atrophy. Using a mathematical model for progression, we have identified that one-third of the progressive genes were also associated with muscle atrophy. Functional and histological analysis of the skeletal muscle of this mouse model confirmed a severe and progressive muscular atrophy associated with a reduction in muscle strength. Moreover, muscle atrophy in the A17.1 mice was restricted to fast glycolytic fibres, containing a large number of intranuclear inclusions (INIs). The soleus muscle and, in particular, oxidative fibres were spared, even though they contained INIs albeit to a lesser degree. These results demonstrate a fibre-type specificity of muscle atrophy in this OPMD model. This study improves our understanding of the biological pathways modified in OPMD to identify potential biomarkers and new therapeutic targets.
Resumo:
Objective: To analyze the effect of arm bracing posture on respiratory muscle strength and pulmonary function in patients with Chronic Obstructive Pulmonary Disease (COPD).Methods: 20 patients with COPD (11 male; 67 +/- 8 years; BMI 24 +/- 3 Kg . m(-2)) were submitted to assessments of Maximal Inspiratory and Expiratory Pressures (MIP and MEP, respectively) and spirometry with and without arm bracing in a random order. The assessment with arm bracing was done on standing position and the height of the support was adjusted at the level of the ulnar styloid process with elbow flexion and trunk anterior inclination of 30 degrees promoting weight discharge in the upper limbs. Assessment without arm bracing was also performed on standing position, however with the arms relaxed alongside the body. The time interval between assessments was one week.Results: MIP, MEP and maximal voluntary ventilation (MW) were higher with arm bracing than without arm bracing (MIP 64 +/- 22 cmH(2)O versus 54 +/- 24 cmH(2)O, p = 0,00001; MEP 104 +/- 37 cmH(2)O versus 92 +/- 37 cmH(2)O, p = 0,00001 and MW 42 +/- 20 L/min versus 38 +/- 20 L/min, p = 0,003). Other variables did not show statistical significant difference.Conclusion: The arm bracing posture resulted in higher capacity to generate force and endurance of the respiratory muscles in patients with COPD. (C) 2009 Published by Elsevier Espana, S.L. on behalf of Sociedade Portuguesa de Pneumologia. All rights reserved.
Resumo:
Human aging is physiological process causes alterations in several systems of the organism. In the musculoskeletal system, a main change is the decreased muscle strength, that in the lower extremity, compromises the ability to respond quickly with enough strength to prevent falls, causing alterations in postural balance. Currently, many researchers have study the human frailty, defined as a multifactorial syndrome, with excess of vulnerability to stressors, reducing ability in maintaining or regulating homeostasis. Its characteristics are directly related to physical function. Aim: To analyze muscle performance and postural balance in frail and pre-frail elderly women, and to compare them according with the frailty phenotypes criteria proposed by Fried 2001. Method: 39 frail elderly women living in the community, aged 65 years and older, were assessed muscle performance of lower extremity using isokinetic dynamometer and postural balance using Berg s balance scale and computerized baropodometry. Results: There was significant difference in plantar flexor, knee flexor and knee extensor strength, in anteroposterior (AP) oscillation with eyes open and on Berg s scores between groups. A weak correlation was observed between strength and balance. Conclusion: The results suggest that the frail elderly present worse muscle performance in lower extremity and worse postural balance compared to the pre-frail elderly. There were correlations between muscle performance and balance impairments in these elderly, but several variables are also involved in maintaining postural balance
Resumo:
PURPOSE: To examine the acute effects caused by three techniques for stretching the hamstrings muscle on the active concentric peak torque (PT), passive PT and electromyographic activity (EMG). METHODS: Sixty volunteers (mean ± SD age, 22.6 ± 3 years), height 1.64 ± 0.07m and body weight of 58 ± 8.6kg, were randomly allocated into 4 groups of 15 subjects: Control Group (CG) - 5 minutes at rest, Static Stretching Group (SG) - 2 x 30s; Hold-Relax Group (HRG) - 3 x 6s of isometric contraction of hamstrings interspersed by 10s of hamstrings stretching and agonist Hold-Relax Group (AHRG) - 3 x 6s of isometric contraction of the quadriceps interspersed by 10s of hamstrings stretching. Evaluation has been conducted preand post-intervention, which verified the active concentric PT, passive PT EMG activity of IT. The statistical inference was performed by testing intra and inter, significance level at 5%. RESULTS: After intervention, there was a reduction in passive PT on CG, accompanied by a reduction of EMG activity, and an increase in passive PT on SG and AHRG. There was no change in the active concentric PT, or change in EMG activity. CG showed an increase in angle of the PT active, while the other groups showed no change. CONCLUSION: The results suggest that the shortterm stretching: 1) causes acute increase in passive torque, since the muscle does not perform sub-maximal contraction, 2) does not change in electromyographic activity and active torque, ind ependent of the technique
Resumo:
Background: The myotonic dystrophy (MD) is a multisystem neuromuscular disease that can affect the respiratory muscles and heart function, and cause impairment in quality of life. Objectives: Investigate the changes in respiratory muscle strength, health-related quality of life (HRQoL) and autonomic modulation heart rate (HR) in patients with MD. Methods: Twenty-three patients performed assessment of pulmonary function, sniff nasal inspiratory pressure (SNIP), the maximal inspiratory (MIP) and expiratory (MEP) pressure, and of HRQoL (SF-36 questionnaire). Of these patients, 17 underwent assessment of heart rate variability (HRV) at rest, in the supine and seated positions. Results: The values of respiratory muscle strength were 64, 70 and 80% of predicted for MEP, MIP, and SNIP, respectively. Significant differences were found in the SF-36 domains of physical functioning (58.7 ± 31,4 vs. 84.5 ± 23, p<0.01) and physical problems (43.4 ± 35.2 vs. 81.2 ± 34, p<0.001) when patients were compared with the reference values. Single linear regression analysis demonstrated that MIP explains 29% of the variance in physical functioning, 18% of physical problems and 20% of vitality. The HRV showed that from supine position to seated, HF decreased (0.43 x 0.30), and LF (0.57 x 0.70) and the LF/HF ratio (1.28 x 2.22) increased (p< 0.05). Compared to healthy persons, LF was lower in both male patients (2.68 x 2.99) and women (2.31 x 2.79) (p< 0.05). LF / HF ratio and LF were higher in men (5.52 x 1.5 and 0.8 x 0.6, p <0.05) and AF in women (0.43 x 0.21) (p< 0.05). There was positive correlation between the time of diagnosis and LF / HF ratio (r = 0.7, p <0.01). Conclusions: The expiratory muscle strength was reduced. The HRQoL was more impaired on the physical aspects and partly influenced by changes in inspiratory muscle strength. The HRV showed that may be sympathetic dysfunction in autonomic modulation of HR, although with normal adjustment of autonomic modulation during the change of posture. The parasympathetic modulation is higher in female patients and sympathetic tends to increase in patients with longer diagnosis
Resumo:
The clinical importance of evaluating the respiratory muscles with a variety of tests has been proposed by several studies, once that the combination of several tests would allow a better diagnosis and therefore, a better clinical follow of disorders of the respiratory muscles. This study aimed to evaluate the feasibility of adapting a national electronic manovacuometer to measure the nasal inspiratory pressure (study 1) and analyze the level of load intensity of maximum voluntary ventilation, as well as the variables that may influence this maneuver in healthy subjects (study 2). We studied 20 healthy subjects by a random evaluation of two measures of SNIP in different equipments: a national and an imported. In study 2 it was analyzed the intensity of the load of MVV test, change in pressure developed during the maneuver, the possible differences between genders, and the correlations between the flow developed in the test and the result of MVV. In study 1 it was found the average for both measures of nasal inspiratory pressures: 125 ± 42.4 cmH2O for the imported equipment and 131.7 ± 28.7 cmH2O for the national one. Pearson analysis showed a significant correlation between the average, with a coefficient r = 0.63. The average values showed no significant differences evaluated by paired t test (p> 0.05). In the Bland-Altman analysis it was found a BIAS = 7 cmH2O, SD 32.9 and a confidence interval of - 57.5 cmH2O up to 71.5 cmH2O. In the second study it was found significant differences between the genders in the air volume moved, being higher in males 150.9 ± 13.1 l / min vs 118.5 ± 15.7 L / min for (p = 0.0002, 95% CI 44.85 to 20:05). Regarding the inspiratory and expiratory loading, they were significantly higher in men than in women, peak inspiratory pressure (34.7 ± 5.3 cmH2O vs 19.5 ± 4.2 cmH2O, 95% CI - 18.0 to -12.3, p <0.0001), peak expiratory (33.8 vs. 23.1 ± 5.9 cmH2O ± 5.4 cmH2O, 95% CI -17.1 to - 4.6, p <0.0001), and the delta pressure (59.7 ± 10 cmH2O vs 36.8 ± 8.3 cmH2O, 95% CI 14.5 to 31.2, p <0.0002). The Pearson correlation showed that the flow generated by the maneuver is strongly correlated with the delta-expiratory pressure / inspiratory (r2= 0.83,R = 0.91, 95%IC 0.72 a 0.97 e p< 0.0001).Through these results we suggest that the national electronic manovacuometer is feasible and safe to perform the sniff test in healthy subjects. For the MVV, there are differences between the genders in the intensity of pressure developed during the maneuver. We found a load intensity considered low during the MVV, and found a strong correlation between the flow generated in the test and the delta pressure expiratory / inspiratory