970 resultados para Murine B-cells
Resumo:
Friend murine leukemia Virus (FV) infection of immunocompetent mice is a well- established model to acquire further knowledge about viral immune suppression mechanisms, with the aim to develop therapeutics against retrovirus-induced diseases. Interestingly, BALB/c mice are infected by low doses of FV and die from FV-induced erythroleukemia, while C57/BL6 mice are infected by FV only at high viral dose, and remain persistently infected for their whole life. Due to the central role of dendritic cells (DC) in the induction of anti-viral responses, we asked for their functional role in the genotype-dependent sensitivity towards FV infection. In my PhD study I showed that bone marrow (BM)-derived DC differentiated from FV-infected BM cells obtained from FV-inoculated BALB/c (FV susceptible) and C57BL/6 (FV resistant) mice showed an increased endocytotic activity and lowered expression of MHCII and of costimulatory receptors as compared with non-infected control BMDC. FV-infected BMDC from either mouse strain were partially resistant towards stimulation-induced upregulation of MHCII and costimulators, and accordingly were poor T cell stimulators in vitro and in vivo. In addition, FV-infected BMDC displayed an altered expression profile of proinflammator cytokines and favoured Th2 polarization. Ongoing work is focussed on elucidating the functional role of proteins identified as differentially expressed in FV-infected DC in a genotype-dependent manner, which therefore may contribute to the differential course of FV infection in vivo in BALB/c versus C57BL/6 mice. So far, more than 300 proteins have been identified which are differently regulated in FV-infected vs. uninfected DC from both mouse strains. One of these proteins, S100A9, was strongly upregulated specifically in BMDC derived from FV-infected C57BL/6 BM cells. S100A9-/- mice were more sensitive towards inoculation with FV than corresponding wild type (WT) mice (both C57BL/6 background), which suggests a decisive role of this factor for anti-viral defense. In addition, FV-infected S100A9-/- BMDC showed lower motility than WT DC. The future work is aimed to further elucidate the functional importance of S100A9 for DC functions. To exploit the potential of DC for immunotherapeutic applications, in another project of this PhD study the usability of different types of functionalized nanoparticles
Resumo:
Granzyme B and perforin messenger RNA (mRNA) expression has been shown to be a specific in vivo activation marker for cytotoxic cells. The aim of this study was to assess the contribution of cell-mediated cytotoxicity in the pathogenesis of lichen sclerosus. In situ hybridization and immunohistochemistry were performed on serial tissue sections of lesional skin biopsies and normal skin as control. Immunohistochemical staining showed that the cellular infiltrate of diseased skin consisted predominantly of T cells (CD3+) and some B cells (CD20+). Among T cells CD4+ and CD8+ cells were found in about equal numbers. In normal skin samples perforin and granzyme B mRNA expressing cells were only rarely found. In contrast, in biopsies from diseased skin a high percentage of infiltrating cells expressed mRNA for perforin and granzyme B. The perforin and granzyme B expressing cells were found in the dermal infiltrate and intraepidermally in close proximity to keratinocytes suggesting in situ activation of these cells. These findings provide evidence that cell-mediated cytotoxicity plays a significant role in tissue destruction in lichen sclerosus.
Resumo:
Phosphatidylserine (PS) is distributed almost entirely in the inner leaflet of the erythrocyte membrane bilayer, and appears to be maintained by a 32 kDa integral membrane protein (PS translocase). The expression of PS on the outer leaflet may serve as a recognition signal for macrophages, since insertion of PS into erythrocytes enhances their adherence to macrophages and clearance from the circulation. Therefore I have hypothesized that erythroid cells display PS on their outer leaflet early in differentiation and upon aging. Analysis of murine erythroleukemia cells (MELC, undifferentiated erythroid progenitor cells) showed high levels of PS on the outer leaflet that decreased during differentiation, correlating with the pattern of macrophage adherence. The activity of the PS translocase during differentiation appears to be unchanged although the equilibrium distribution of PS differs. This difference may be due to qualitative changes in the PS translocase. $\sp{125}$I-Bolton/Hunter-labeled-pyridyldithioethylamine ($\sp{125}$I-B/H-PDA), a radiolabeled probe for the PS translocase, labeled a 32 kDa protein in mature erythrocytes whereas in MELC a 45 kDa protein as well as a 32 kDa protein was identified. The abundance of the 45 kDa protein in relation to the 32 kDa protein declined during differentiation, possibly indicating this protein was a precursor of the 32 kDa protein. Analysis of the 45 kDa protein by N-glycosidase F and endoproteinase cleavage suggested this protein was not a glycosylated form of the 32 kDa protein but appeared to share some structural homology. Aged murine erythrocytes had elevated levels of PS on their outer leaflet, as well as decreased PS translocase activity. $\sp{125}$I-B/H-PDA labeled a 32 kDa protein in both normal and aged erythrocytes. However, the latter cells also contained a 28 kDa protein. Experimental evidence suggests that the appearance of the 28 kDa protein may be due to increased oxidation of aged erythrocytes. Examination of PS distribution showed that the levels of PS on the outer leaflet were elevated early in differentiation, decreased during the mature state, and returned to high levels as the erythrocyte aged. In conclusion,the levels of outer leaflet PS correlated with the differentiation status and macrophage recognition of erythroid cells. ^
Resumo:
Protective/suppressive major histocompatibility complex (MHC) class II alleles have been identified in humans and mice where they exert a disease-protective and immunosuppressive effect. Various modes of action have been proposed, among them differential expression of MHC class II genes in different types of antigen-presenting cells impacting on the T helper type 1 (Th1)–Th2 balance. To test this possibility, the expression of H-2 molecules from the four haplotypes H-2b, H-2d, H-2k, and H-2q was determined on bone marrow-derived macrophages (BMDMs) and splenic B cells. The I-Ab and I-Ek molecules, both well characterized as protective/suppressive, are expressed at a high level on almost all CD11b+ BMDMs for 5–8 days, after which expression slowly declines. In contrast, I-Ad, I-Ak, and I-Aq expression is lower, peaks over a shorter period, and declines more rapidly. No differential expression could be detected on B cells. In addition, the differential MHC class II expression found on macrophages skews the cytokine response of T cells as shown by an in vitro restimulation assay with BMDMs as antigen-presenting cells. The results indicate that macrophages of the protective/suppressive haplotypes express MHC class II molecules at a high level and exert Th1 bias, whereas low-level expression favors a Th2 response. We suggest that the extent of expression of the class II gene gates the back signal from T cells and in this way controls the activity of macrophages. This effect mediated by polymorphic nonexon segments of MHC class II genes may play a role in determining disease susceptibility in humans and mice.
Resumo:
The tetraspanin CD81 is ubiquitously expressed and associated with CD19 on B lymphocytes and with CD4 and CD8 on T lymphocytes. Analysis of mice with disrupted CD81 gene reveals normal T cells but a distinct abnormality in B cells consisting of decreased expression of CD19 and severe reduction in peritoneal B-1 cells. CD81-deficient B cells responded normally to surface IgM crosslinking, but had severely impaired calcium influx following CD19 engagement. CD81-deficient mice had increased serum IgM and IgA and an exaggerated antibody response to the type II T independent antigen TNP-Ficoll. These results suggest that CD81 is important for CD19 signaling and B cell function.
Resumo:
The Ink4a/Arf locus encodes p16Ink4a and p19Arf and is among the most frequently mutated tumor suppressor loci in human cancer. In mice, many of these effects appear to be mediated by interactions between p19Arf and the p53 tumor-suppressor protein. Because Tp53 mutations are a common feature of the multistep pre-B cell transformation process mediated by Abelson murine leukemia virus (Ab-MLV), we examined the possibility that proteins encoded by the Ink4a/Arf locus also play a role in Abelson virus transformation. Analyses of primary transformants revealed that both p16Ink4a and p19Arf are expressed in many of the cells as they emerge from the apoptotic crisis that characterizes the transformation process. Analyses of primary transformants from Ink4a/Arf null mice revealed that these cells bypassed crisis. Because expression of p19Arf but not p16 Ink4a induced apoptosis in Ab-MLV-transformed pre-B cells, p19Arf appears to be responsible for these events. Consistent with the link between p19Arf and p53, Ink4a/Arf expression correlates with or precedes the emergence of cells expressing mutant p53. These data demonstrate that p19Arf is an important part of the cellular defense mounted against transforming signals from the Abl oncoprotein and provide direct evidence that the p19Arf–p53 regulatory loop plays an important role in lymphoma induction.
Resumo:
Mutations in Btk result in the B cell immunodeficiencies X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (xid) in mice. Btk is a critical component of signaling pathways regulating B cell development and function. We used a genetic approach to determine whether Btk is also limiting for these processes. One allele of a murine Btk transgene expressed a dosage of Btk (25% of endogenous levels in splenic B cells) sufficient to restore normal numbers of phenotypically mature conventional B cells in xid mice. 2,4,6-trinitrophenyl–Ficoll response, anti-IgM-induced proliferation, B1 cell development, and serum IgM and IgG3 levels remained significantly impaired in these animals. B cells from Btk −/− transgenic mice also responded poorly to anti-IgM, indicating that the xid mutation does not create a dominant negative form of Btk. Response to 2,4,6-trinitrophenyl–Ficoll and B cell receptor cross-linking were increased 3- to 4-fold in xid mice homozygous for the transgene. These results demonstrate that Btk is a limiting component of B cell antigen receptor signaling pathways and suggest that B cell development and response to antigen may require different levels of Btk activity.
Resumo:
PIR-A and PIR-B are activating and inhibitory Ig-like receptors on murine B lymphocytes, dendritic cells, and myeloid-lineage cells. The inhibitory function of PIR-B is mediated via its cytoplasmic immunoreceptor tyrosine-based inhibitory motifs, whereas PIR-A pairs with the Fc receptor common γ chain to form an activating receptor complex. In these studies, we observed constitutive tyrosine phosphorylation of PIR-B molecules on macrophages and B lymphocytes, irrespective of the cell activation status. Splenocyte PIR-B molecules were constitutively associated with the SHP-1 protein tyrosine phosphatase and Lyn protein tyrosine kinase. In Lyn-deficient mice, PIR-B tyrosine phosphorylation was greatly reduced. Unexpectedly, tyrosine phosphorylation of PIR-B was not observed in most myeloid and B cell lines but could be induced by ligation of the PIR molecules. Finally, the phosphorylation status of PIR-B was significantly reduced in MHC class I-deficient mice, although not in mice deficient in TAP1 or MHC class II expression. These findings suggest a physiological inhibitory role for PIR-B that is regulated by endogenous MHC class I-like ligands.
Resumo:
The SLP-76 (Src homology 2 domain-containing leukocyte protein of 76 kDa) adapter protein is expressed in T cells and myeloid cells, whereas its homologue BLNK (B cell linker protein) is expressed in B cells. SLP-76 and BLNK link immunoreceptor tyrosine-based activation motif-containing receptors to signaling molecules that include phospholipase C-γ, mitogen-activated protein kinases, and the GTPases Ras and Rho. SLP-76 plays a critical role in T cell receptor, FcɛRI and gpVI collagen receptor signaling, and participates in signaling via FcγR and killer cell inhibitory receptors. BLNK plays a critical role in B cell receptor signaling. We show that murine bone marrow-derived macrophages express both SLP-76 and BLNK. Selective ligation of FcγRI and FcγRII/III resulted in tyrosine phosphorylation of both SLP-76 and BLNK. SLP-76−/− bone marrow-derived macrophages display FcγR-mediated tyrosine phosphorylation of Syk, phospholipase C-γ2, and extracellular signal regulated kinases 1 and 2, and normal FcγR-dependent phagocytosis. These data suggest that both SLP-76 and BLNK are coupled to FcγR signaling in murine macrophages.
Resumo:
Natural killer (NK) cells express C-type lectin-like receptors, encoded in the NK gene complex, that interact with major histocompatibility complex class I and either inhibit or activate functional activity. Human NK cells express heterodimers consisting of CD94 and NKG2 family molecules, whereas murine NK cells express homodimers belonging to the Ly-49 family. The corresponding orthologues for other species, however, have not been described. In this report, we used probes derived from the expressed sequence tag database to clone C57BL/6-derived cDNAs homologous to human NKG2-D and CD94. Among normal tissues, murine NKG2-D and CD94 transcripts are highly expressed only in activated NK cells, including both Ly-49A+ and Ly-49A− subpopulations. Additionally, mNKG2-D is expressed in murine NK cell clones KY-1 and KY-2, whereas mCD94 expression is observed only in KY-1 cells but not KY-2. Last, we have finely mapped the physical location of the Cd94 (centromeric) and Nkg2d (telomeric) genes between Cd69 and the Ly49 cluster in the NK complex. Thus, these data indicate the expanding complexity of the NK complex and the corresponding repertoire of C-type lectin-like receptors on murine NK cells.
Resumo:
Bacterial lipopolysaccharide (LPS) is a potent stimulator of B-cell activation, proliferation, and differentiation. We examined the genetic response of B-lineage cells to LPS via trapping of expressed genes with a gene-trap retrovirus. This analysis showed that expression of only a small fraction of genes is altered during LPS stimulation of B-lineage cells. Isolation of the cellular portion of the trapped LPS-response genes via 5' RACE (rapid amplification of cDNA ends) cloning identified novel genes for all the cloned loci. These novel LPS-response genes were also found to have differentiation stage-restricted expression within the B-lymphoid lineage. That LPS-response genes in B cells also have differentiation stage-restricted expression suggests that these genes may be involved in the control of B-cell function and differentiation, since the known members of this class of genes have frequently been found to play a role in the function and differentiation of B-lineage cells. The isolation of novel members of this class of genes, including a gene that contains a putative SH2 domain, will further increase our understanding of the molecular events involved in the control of B-cell differentiation and function.
Resumo:
The Pax5 transcription factor BSAP (B-cell-specific activator protein) is known to bind to and repress the activity of the immunoglobulin heavy chain 3' alpha enhancer. We have detected an element--designated alpha P--that lies approximately 50 bp downstream of the BSAP binding site 1 and is required for maximal enhancer activity. In vitro binding experiments suggest that the 40-kDa protein that binds to this element (NF-alpha P) is a member of the Ets family present in both B-cell and plasma-cell nuclei. However, in vivo footprint analysis suggests that the alpha P site is occupied only in plasma cells, whereas the BSAP site is occupied in B cells but not in plasma cells. When Pax5 binding to the enhancer in B cells was blocked in vivo by transfection with a triple-helix-forming oligonucleotide an alpha P footprint appeared and endogenous immunoglobulin heavy chain transcripts increased. The triple-helix-forming oligonucleotide also increased enhancer activity of a transfected construct in B cells, but only when the alpha P site was intact. Pax5 thus regulates the 3' alpha enhancer and immunoglobulin gene transcription by blocking activation by NF-alpha P.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Tannerella forsythia has been implicated as a defined periodontal pathogen. In the present study a mouse model was used to determine the phenotype of leukocytes in the lesions induced by subcutaneous injections of either live (group A) or nonviable (group B) T. forsythia. Control mice (group C) received the vehicle only. Lesions were excised at days 1, 2, 4, and 7. An avidin-biotin immunoperoxidase method was used to stain infiltrating CD4(+) and CD8(+) T cells, CD14(+) macrophages, CD19(+) B cells, and neutrophils. Hematoxylin and eosin sections demonstrated lesions with central necrotic cores surrounded by neutrophils, macrophages and lymphocytes in both group A and group B mice. Lesions from control mice exhibited no or only occasional solitary leukocytes. In both groups A and B, neutrophils were the dominant leukocyte in the lesion 1 day after injection, the numbers decreasing over the 7-day experimental period. There was a relatively low mean percent of CD4(+) and CD8(+) T cells in the lesions and, whereas the percent of CD8(+) T cells remained constant, there was a significant increase in the percent of CD4(+) T cells at day 7. This increase was more evident in group A mice. The mean percent of CD14(+) macrophages and CD19(+) B cells remained low over the experimental period, although there was a significantly higher mean percent of CD19(+) B cells at day 1. In conclusion, the results showed that immunization of mice with live T. forsythia induced a stronger immune response than nonviable organisms. The inflammatory response presented as a nonspecific immune response with evidence of an adaptive (T-cell) response by day 7. Unlike Porphyromonas gingivalis, there was no inhibition of neutrophil migration.
Resumo:
Aims: An important consideration in the design of a tumour vaccine is the ability of tumour-specific cytotoxic T lymphocytes (CTL) to recognise unmanipulated tumour cells in vivo. To determine whether B-CLL might use an escape strategy, the current studies compared B-CLL and normal B cell MHC class I expression. Methods: Flow cytometry, TAP allele PCR and MHC class I PCR were used. Results: While baseline expression of MHC class I did not differ, upregulation of MHC class I expression by B-CLL cells in response to IFN-gamma was reduced. No deletions or mutations of TAP 1 or 2 genes were detected. B-CLL cells upregulated TAP protein expression in response to IFN-gamma. Responsiveness of B-CLL MHC class I mRNA to IFN-gamma was not impaired. Conclusions: The data suggest that MHC class I molecules might be less stable at the cell surface in B-CLL than normal B cells, as a result of the described release of beta(2)m and beta(2)m-free class I heavy chains from the membrane. This relative MHC class I expression defect of B-CLL cells may reduce their susceptibility to CTL lysis in response to immunotherapeutic approaches.