931 resultados para Multivariate geostatistics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The statistical properties of the multivariate GammaGamma (ΓΓ) distribution with arbitrary correlation have remained unknown. In this paper, we provide analytical expressions for the joint probability density function (PDF), cumulative distribution function (CDF) and moment generation function of the multivariate ΓΓ distribution with arbitrary correlation. Furthermore, we present novel approximating expressions for the PDF and CDF of the su m of ΓΓ random variables with arbitrary correlation. Based on this statistical analysis, we investigate the performance of radio frequency and optical wireless communication systems. It is noteworthy that the presented expressions include several previous results in the literature as special cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Slow release drugs must be manufactured to meet target specifications with respect to dissolution curve profiles. In this paper we consider the problem of identifying the drivers of dissolution curve variability of a drug from historical manufacturing data. Several data sources are considered: raw material parameters, coating data, loss on drying and pellet size statistics. The methodology employed is to develop predictive models using LASSO, a powerful machine learning algorithm for regression with high-dimensional datasets. LASSO provides sparse solutions facilitating the identification of the most important causes of variability in the drug fabrication process. The proposed methodology is illustrated using manufacturing data for a slow release drug.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biodegradable polymers, such as PLA (Polylactide), come from renewable resources like corn starch and if disposed of correctly, degrade and become harmless to the ecosystem making them attractive alternatives to petroleum based polymers. PLA in particular is used in a variety of applications including medical devices, food packaging and waste disposal packaging. However, the industry faces challenges in melt processing of PLA due to its poor thermal stability which is influenced by processing temperatures and shearing.
Identification and control of suitable processing conditions is extremely challenging, usually relying on trial and error, and often sensitive to batch to batch variations. Off-line assessment in a lab environment can result in high scrap rates, long lead times and lengthy and expensive process development. Scrap rates are typically in the region of 25-30% for medical grade PLA costing between €2000-€5000/kg.
Additives are used to enhance material properties such as mechanical properties and may also have a therapeutic role in the case of bioresorbable medical devices, for example the release of calcium from orthopaedic implants such as fixation screws promotes healing. Additives can also reduce the costs involved as less of the polymer resin is required.
This study investigates the scope for monitoring, modelling and optimising processing conditions for twin screw extrusion of PLA and PLA w/calcium carbonate to achieve desired material properties. A DAQ system has been constructed to gather data from a bespoke measurement die comprising melt temperature; pressure drop along the length of the die; and UV-Vis spectral data which is shown to correlate to filler dispersion. Trials were carried out under a range of processing conditions using a Design of Experiments approach and samples were tested for mechanical properties, degradation rate and the release rate of calcium. Relationships between recorded process data and material characterisation results are explored.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de doutoramento, Métodos Quantitativos Aplicados à Economia e à Gestão, Faculdade de Economia, Universidade do Algarve, 2014

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ecological sciences have experienced immense growth over the course of this century, and chances are that they will continue to grow well on into the next millennium. There are some good reasons for this – ecology encompasses some of the most pressing concerns facing humanity. With recent advances in data collection technology and ambitious field research, ecologists are increasingly calling upon multivariate statistics to explore and test for patterns in their data. The goal of FISH 560 (Applied Multivariate Statistics for Ecologists) at the University of Washington is to introduce graduate students to the multivariate statistical techniques necessary to carry out sophisticated analyses and to critically evaluate scientific papers using these approaches. It is a practical, hands-on course emphasizing the analysis and interpretation of multivariate analysis, and covers the majority of approaches in common use by ecologists. To celebrate the hard work of past students, I am pleased to announce the creation of the Electronic Journal of Applied Multivariate Statistics (EJAMS). Each year, students in FISH 560 are required to write a final paper consisting of a statistical analysis of their own multivariate data set. These papers are submitted to EJAMS at the end of quarter and are peer reviewed by two other class members. A decision on publication is based on the reviewers’ recommendations and my own reading the paper. In closing, there is a need for the rapid dissemination of ecological research using multivariate statistics at the University of Washington. EJAMS is committed to this challenge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mesoscale (100–102 m) of river habitats has been identified as the scale that simultaneously offers insights into ecological structure and falls within the practical bounds of river management. Mesoscale habitat (mesohabitat) classifications for relatively large rivers, however, are underdeveloped compared with those produced for smaller streams. Approaches to habitat modelling have traditionally focused on individual species or proceeded on a species-by-species basis. This is particularly problematic in larger rivers where the effects of biological interactions are more complex and intense. Community-level approaches can rapidly model many species simultaneously, thereby integrating the effects of biological interactions while providing information on the relative importance of environmental variables in structuring the community. One such community-level approach, multivariate regression trees, was applied in order to determine the relative influences of abiotic factors on fish assemblages within shoreline mesohabitats of San Pedro River, Chile, and to define reference communities prior to the planned construction of a hydroelectric power plant. Flow depth, bank materials and the availability of riparian and instream cover, including woody debris, were the main variables driving differences between the assemblages. Species strongly indicative of distinctive mesohabitat types included the endemic Galaxias platei. Among other outcomes, the results provide information on the impact of non-native salmonids on river-dwelling Galaxias platei, suggesting a degree of habitat segregation between these taxa based on flow depth. The results support the use of the mesohabitat concept in large, relatively pristine river systems, and they represent a basis for assessing the impact of any future hydroelectric power plant construction and operation. By combing community classifications with simple sets of environmental rules, the multivariate regression trees produced can be used to predict the community structure of any mesohabitat along the reach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we analyse the emerging patterns of regional collaboration for innovation projects in China, using official government statistics of 30 Chinese regions. We propose the use of Ordinal Multidimensional Scaling and Cluster analysis as a robust method to study regional innovation systems. Our results show that regional collaborations amongst organisations can be categorised by means of eight dimensions: public versus private organisational mindset; public versus private resources; innovation capacity versus available infrastructures; innovation input (allocated resources) versus innovation output; knowledge production versus knowledge dissemination; and collaborative capacity versus collaboration output. Collaborations which are aimed to generate innovation fell into 4 categories, those related to highly specialised public research institutions, public universities, private firms and governmental intervention. By comparing the representative cases of regions in terms of these four innovation actors, we propose policy measures for improving regional innovation collaboration within China.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we propose a new semi-nonparametric (SNP) density model for describing the density of portfolio returns. This distribution, which we refer to as the multivariate moments expansion (MME), admits any non-Gaussian (multivariate) distribution as its basis because it is specified directly in terms of the basis density’s moments. To obtain the expansion of the Gaussian density, the MME is a reformulation of the multivariate Gram-Charlier (MGC), but the MME is much simpler and tractable than the MGC when positive transformations are used to produce well-defined densities. As an empirical application, we extend the dynamic conditional equicorrelation (DECO) model to an SNP framework using the MME. The resulting model is parameterized in a feasible manner to admit two-stage consistent estimation and it represents the DECO as well as the salient non-Gaussian features of portfolio return distributions. The in- and out-of-sample performance of a MME-DECO model of a portfolio of 10 assets demonstrate that it can be a useful tool for risk management purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aims to optimize the water quality monitoring of a polluted watercourse (Leça River, Portugal) through the principal component analysis (PCA) and cluster analysis (CA). These statistical methodologies were applied to physicochemical, bacteriological and ecotoxicological data (with the marine bacterium Vibrio fischeri and the green alga Chlorella vulgaris) obtained with the analysis of water samples monthly collected at seven monitoring sites and during five campaigns (February, May, June, August, and September 2006). The results of some variables were assigned to water quality classes according to national guidelines. Chemical and bacteriological quality data led to classify Leça River water quality as “bad” or “very bad”. PCA and CA identified monitoring sites with similar pollution pattern, giving to site 1 (located in the upstream stretch of the river) a distinct feature from all other sampling sites downstream. Ecotoxicity results corroborated this classification thus revealing differences in space and time. The present study includes not only physical, chemical and bacteriological but also ecotoxicological parameters, which broadens new perspectives in river water characterization. Moreover, the application of PCA and CA is very useful to optimize water quality monitoring networks, defining the minimum number of sites and their location. Thus, these tools can support appropriate management decisions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unraveling the effect of selection vs. drift on the evolution of quantitative traits is commonly achieved by one of two methods. Either one contrasts population differentiation estimates for genetic markers and quantitative traits (the Q(st)-F(st) contrast) or multivariate methods are used to study the covariance between sets of traits. In particular, many studies have focused on the genetic variance-covariance matrix (the G matrix). However, both drift and selection can cause changes in G. To understand their joint effects, we recently combined the two methods into a single test (accompanying article by Martin et al.), which we apply here to a network of 16 natural populations of the freshwater snail Galba truncatula. Using this new neutrality test, extended to hierarchical population structures, we studied the multivariate equivalent of the Q(st)-F(st) contrast for several life-history traits of G. truncatula. We found strong evidence of selection acting on multivariate phenotypes. Selection was homogeneous among populations within each habitat and heterogeneous between habitats. We found that the G matrices were relatively stable within each habitat, with proportionality between the among-populations (D) and the within-populations (G) covariance matrices. The effect of habitat heterogeneity is to break this proportionality because of selection for habitat-dependent optima. Individual-based simulations mimicking our empirical system confirmed that these patterns are expected under the selective regime inferred. We show that homogenizing selection can mimic some effect of drift on the G matrix (G and D almost proportional), but that incorporating information from molecular markers (multivariate Q(st)-F(st)) allows disentangling the two effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The aim of the current study was to assess whether widely used nutritional parameters are correlated with the nutritional risk score (NRS-2002) to identify postoperative morbidity and to evaluate the role of nutritionists in nutritional assessment. METHODS: A randomized trial on preoperative nutritional interventions (NCT00512213) provided the study cohort of 152 patients at nutritional risk (NRS-2002 ≥3) with a comprehensive phenotyping including diverse nutritional parameters (n=17), elaborated by nutritional specialists, and potential demographic and surgical (n=5) confounders. Risk factors for overall, severe (Dindo-Clavien 3-5) and infectious complications were identified by univariate analysis; parameters with P<0.20 were then entered in a multiple logistic regression model. RESULTS: Final analysis included 140 patients with complete datasets. Of these, 61 patients (43.6%) were overweight, and 72 patients (51.4%) experienced at least one complication of any degree of severity. Univariate analysis identified a correlation between few (≤3) active co-morbidities (OR=4.94; 95% CI: 1.47-16.56, p=0.01) and overall complications. Patients screened as being malnourished by nutritional specialists presented less overall complications compared to the not malnourished (OR=0.47; 95% CI: 0.22-0.97, p=0.043). Severe postoperative complications occurred more often in patients with low lean body mass (OR=1.06; 95% CI: 1-1.12, p=0.028). Few (≤3) active co-morbidities (OR=8.8; 95% CI: 1.12-68.99, p=0.008) were related with postoperative infections. Patients screened as being malnourished by nutritional specialists presented less infectious complications (OR=0.28; 95% CI: 0.1-0.78), p=0.014) as compared to the not malnourished. Multivariate analysis identified few co-morbidities (OR=6.33; 95% CI: 1.75-22.84, p=0.005), low weight loss (OR=1.08; 95% CI: 1.02-1.14, p=0.006) and low hemoglobin concentration (OR=2.84; 95% CI: 1.22-6.59, p=0.021) as independent risk factors for overall postoperative complications. Compliance with nutritional supplements (OR=0.37; 95% CI: 0.14-0.97, p=0.041) and supplementation of malnourished patients as assessed by nutritional specialists (OR=0.24; 95% CI: 0.08-0.69, p=0.009) were independently associated with decreased infectious complications. CONCLUSIONS: Nutritional support based upon NRS-2002 screening might result in overnutrition, with potentially deleterious clinical consequences. We emphasize the importance of detailed assessment of the nutritional status by a dedicated specialist before deciding on early nutritional intervention for patients with an initial NRS-2002 score of ≥3.