888 resultados para Multiple scales methods


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The naturally occurring clonal diversity among field isolates of the major human malaria parasite Plasmodium vivax remained unexplored until the early 1990s, when improved molecular methods allowed the use of blood samples obtained directly from patients, without prior in vitro culture, for genotyping purposes. Here we briefly review the molecular strategies currently used to detect genetically distinct clones in patient-derived P. vivax samples, present evidence that multiple-clone P. vivax infections are commonly detected in areas with different levels of malaria transmission and discuss possible evolutionary and epidemiological consequences of the competition between genetically distinct clones in natural human infections. We suggest that, when two or more genetically distinct clones are present in the same host, intra-host competition for limited resources may select for P. vivax traits that represent major public health challenges, such as increased virulence, increased transmissibility and antimalarial drug resistance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Consider the problem of testing k hypotheses simultaneously. In this paper,we discuss finite and large sample theory of stepdown methods that providecontrol of the familywise error rate (FWE). In order to improve upon theBonferroni method or Holm's (1979) stepdown method, Westfall and Young(1993) make eective use of resampling to construct stepdown methods thatimplicitly estimate the dependence structure of the test statistics. However,their methods depend on an assumption called subset pivotality. The goalof this paper is to construct general stepdown methods that do not requiresuch an assumption. In order to accomplish this, we take a close look atwhat makes stepdown procedures work, and a key component is a monotonicityrequirement of critical values. By imposing such monotonicity on estimatedcritical values (which is not an assumption on the model but an assumptionon the method), it is demonstrated that the problem of constructing a validmultiple test procedure which controls the FWE can be reduced to the problemof contructing a single test which controls the usual probability of a Type 1error. This reduction allows us to draw upon an enormous resamplingliterature as a general means of test contruction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Modafinil has anecdotal response to neurological fatigue, but such an effect may depend on the type and location of cerebral impairment. OBJECTIVES: It was the aim of this study to compare fatigue observed in different neurological pathologies, to evaluate the tolerability to modafinil, and to describe changes in subjective fatigue. METHODS: We enrolled 14 brainstem or diencephalic stroke (BDS) patients, 9 cortical stroke (CS) patients and 17 multiple sclerosis (MS) patients. The Fatigue Assessment Instrument severity scale was performed at baseline, after 3 months of modafinil and after 1 month of washout. Cognition, mood and somnolence were assessed. A subgroup of 14 patients underwent activity measures before and during treatment. RESULTS: Thirty-one patients completed the study (10 BDS, 9 CS, 12 MS). The responder profile is more frequent in MS than in CS (p = 0.04), and in BDS than in CS patients (p = 0.04). Actiwatch measures showed no changes in activity during, before and after therapy. CONCLUSION: Modafinil was tolerated in 75% of patients at small doses and seemed to improve the severity of fatigue in the MS and BDS groups but not in the CS group. There was no modification in measured physical activity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The M-Coffee server is a web server that makes it possible to compute multiple sequence alignments (MSAs) by running several MSA methods and combining their output into one single model. This allows the user to simultaneously run all his methods of choice without having to arbitrarily choose one of them. The MSA is delivered along with a local estimation of its consistency with the individual MSAs it was derived from. The computation of the consensus multiple alignment is carried out using a special mode of the T-Coffee package [Notredame, Higgins and Heringa (T-Coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 2000; 302: 205-217); Wallace, O'Sullivan, Higgins and Notredame (M-Coffee: combining multiple sequence alignment methods with T-Coffee. Nucleic Acids Res. 2006; 34: 1692-1699)] Given a set of sequences (DNA or proteins) in FASTA format, M-Coffee delivers a multiple alignment in the most common formats. M-Coffee is a freeware open source package distributed under a GPL license and it is available either as a standalone package or as a web service from www.tcoffee.org.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Les catastrophes sont souvent perçues comme des événements rapides et aléatoires. Si les déclencheurs peuvent être soudains, les catastrophes, elles, sont le résultat d'une accumulation des conséquences d'actions et de décisions inappropriées ainsi que du changement global. Pour modifier cette perception du risque, des outils de sensibilisation sont nécessaires. Des méthodes quantitatives ont été développées et ont permis d'identifier la distribution et les facteurs sous- jacents du risque.¦Le risque de catastrophes résulte de l'intersection entre aléas, exposition et vulnérabilité. La fréquence et l'intensité des aléas peuvent être influencées par le changement climatique ou le déclin des écosystèmes, la croissance démographique augmente l'exposition, alors que l'évolution du niveau de développement affecte la vulnérabilité. Chacune de ses composantes pouvant changer, le risque est dynamique et doit être réévalué périodiquement par les gouvernements, les assurances ou les agences de développement. Au niveau global, ces analyses sont souvent effectuées à l'aide de base de données sur les pertes enregistrées. Nos résultats montrent que celles-ci sont susceptibles d'être biaisées notamment par l'amélioration de l'accès à l'information. Elles ne sont pas exhaustives et ne donnent pas d'information sur l'exposition, l'intensité ou la vulnérabilité. Une nouvelle approche, indépendante des pertes reportées, est donc nécessaire.¦Les recherches présentées ici ont été mandatées par les Nations Unies et par des agences oeuvrant dans le développement et l'environnement (PNUD, l'UNISDR, la GTZ, le PNUE ou l'UICN). Ces organismes avaient besoin d'une évaluation quantitative sur les facteurs sous-jacents du risque, afin de sensibiliser les décideurs et pour la priorisation des projets de réduction des risques de désastres.¦La méthode est basée sur les systèmes d'information géographique, la télédétection, les bases de données et l'analyse statistique. Une importante quantité de données (1,7 Tb) et plusieurs milliers d'heures de calculs ont été nécessaires. Un modèle de risque global a été élaboré pour révéler la distribution des aléas, de l'exposition et des risques, ainsi que pour l'identification des facteurs de risque sous- jacent de plusieurs aléas (inondations, cyclones tropicaux, séismes et glissements de terrain). Deux indexes de risque multiples ont été générés pour comparer les pays. Les résultats incluent une évaluation du rôle de l'intensité de l'aléa, de l'exposition, de la pauvreté, de la gouvernance dans la configuration et les tendances du risque. Il apparaît que les facteurs de vulnérabilité changent en fonction du type d'aléa, et contrairement à l'exposition, leur poids décroît quand l'intensité augmente.¦Au niveau local, la méthode a été testée pour mettre en évidence l'influence du changement climatique et du déclin des écosystèmes sur l'aléa. Dans le nord du Pakistan, la déforestation induit une augmentation de la susceptibilité des glissements de terrain. Les recherches menées au Pérou (à base d'imagerie satellitaire et de collecte de données au sol) révèlent un retrait glaciaire rapide et donnent une évaluation du volume de glace restante ainsi que des scénarios sur l'évolution possible.¦Ces résultats ont été présentés à des publics différents, notamment en face de 160 gouvernements. Les résultats et les données générées sont accessibles en ligne (http://preview.grid.unep.ch). La méthode est flexible et facilement transposable à des échelles et problématiques différentes, offrant de bonnes perspectives pour l'adaptation à d'autres domaines de recherche.¦La caractérisation du risque au niveau global et l'identification du rôle des écosystèmes dans le risque de catastrophe est en plein développement. Ces recherches ont révélés de nombreux défis, certains ont été résolus, d'autres sont restés des limitations. Cependant, il apparaît clairement que le niveau de développement configure line grande partie des risques de catastrophes. La dynamique du risque est gouvernée principalement par le changement global.¦Disasters are often perceived as fast and random events. If the triggers may be sudden, disasters are the result of an accumulation of actions, consequences from inappropriate decisions and from global change. To modify this perception of risk, advocacy tools are needed. Quantitative methods have been developed to identify the distribution and the underlying factors of risk.¦Disaster risk is resulting from the intersection of hazards, exposure and vulnerability. The frequency and intensity of hazards can be influenced by climate change or by the decline of ecosystems. Population growth increases the exposure, while changes in the level of development affect the vulnerability. Given that each of its components may change, the risk is dynamic and should be reviewed periodically by governments, insurance companies or development agencies. At the global level, these analyses are often performed using databases on reported losses. Our results show that these are likely to be biased in particular by improvements in access to information. International losses databases are not exhaustive and do not give information on exposure, the intensity or vulnerability. A new approach, independent of reported losses, is necessary.¦The researches presented here have been mandated by the United Nations and agencies working in the development and the environment (UNDP, UNISDR, GTZ, UNEP and IUCN). These organizations needed a quantitative assessment of the underlying factors of risk, to raise awareness amongst policymakers and to prioritize disaster risk reduction projects.¦The method is based on geographic information systems, remote sensing, databases and statistical analysis. It required a large amount of data (1.7 Tb of data on both the physical environment and socio-economic parameters) and several thousand hours of processing were necessary. A comprehensive risk model was developed to reveal the distribution of hazards, exposure and risk, and to identify underlying risk factors. These were performed for several hazards (e.g. floods, tropical cyclones, earthquakes and landslides). Two different multiple risk indexes were generated to compare countries. The results include an evaluation of the role of the intensity of the hazard, exposure, poverty, governance in the pattern and trends of risk. It appears that the vulnerability factors change depending on the type of hazard, and contrary to the exposure, their weight decreases as the intensity increases.¦Locally, the method was tested to highlight the influence of climate change and the ecosystems decline on the hazard. In northern Pakistan, deforestation exacerbates the susceptibility of landslides. Researches in Peru (based on satellite imagery and ground data collection) revealed a rapid glacier retreat and give an assessment of the remaining ice volume as well as scenarios of possible evolution.¦These results were presented to different audiences, including in front of 160 governments. The results and data generated are made available online through an open source SDI (http://preview.grid.unep.ch). The method is flexible and easily transferable to different scales and issues, with good prospects for adaptation to other research areas. The risk characterization at a global level and identifying the role of ecosystems in disaster risk is booming. These researches have revealed many challenges, some were resolved, while others remained limitations. However, it is clear that the level of development, and more over, unsustainable development, configures a large part of disaster risk and that the dynamics of risk is primarily governed by global change.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Information about the composition of regulatory regions is of great value for designing experiments to functionally characterize gene expression. The multiplicity of available applications to predict transcription factor binding sites in a particular locus contrasts with the substantial computational expertise that is demanded to manipulate them, which may constitute a potential barrier for the experimental community. Results: CBS (Conserved regulatory Binding Sites, http://compfly.bio.ub.es/CBS) is a public platform of evolutionarily conserved binding sites and enhancers predicted in multiple Drosophila genomes that is furnished with published chromatin signatures associated to transcriptionally active regions and other experimental sources of information. The rapid access to this novel body of knowledge through a user-friendly web interface enables non-expert users to identify the binding sequences available for any particular gene, transcription factor, or genome region. Conclusions: The CBS platform is a powerful resource that provides tools for data mining individual sequences and groups of co-expressed genes with epigenomics information to conduct regulatory screenings in Drosophila.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Learning of preference relations has recently received significant attention in machine learning community. It is closely related to the classification and regression analysis and can be reduced to these tasks. However, preference learning involves prediction of ordering of the data points rather than prediction of a single numerical value as in case of regression or a class label as in case of classification. Therefore, studying preference relations within a separate framework facilitates not only better theoretical understanding of the problem, but also motivates development of the efficient algorithms for the task. Preference learning has many applications in domains such as information retrieval, bioinformatics, natural language processing, etc. For example, algorithms that learn to rank are frequently used in search engines for ordering documents retrieved by the query. Preference learning methods have been also applied to collaborative filtering problems for predicting individual customer choices from the vast amount of user generated feedback. In this thesis we propose several algorithms for learning preference relations. These algorithms stem from well founded and robust class of regularized least-squares methods and have many attractive computational properties. In order to improve the performance of our methods, we introduce several non-linear kernel functions. Thus, contribution of this thesis is twofold: kernel functions for structured data that are used to take advantage of various non-vectorial data representations and the preference learning algorithms that are suitable for different tasks, namely efficient learning of preference relations, learning with large amount of training data, and semi-supervised preference learning. Proposed kernel-based algorithms and kernels are applied to the parse ranking task in natural language processing, document ranking in information retrieval, and remote homology detection in bioinformatics domain. Training of kernel-based ranking algorithms can be infeasible when the size of the training set is large. This problem is addressed by proposing a preference learning algorithm whose computation complexity scales linearly with the number of training data points. We also introduce sparse approximation of the algorithm that can be efficiently trained with large amount of data. For situations when small amount of labeled data but a large amount of unlabeled data is available, we propose a co-regularized preference learning algorithm. To conclude, the methods presented in this thesis address not only the problem of the efficient training of the algorithms but also fast regularization parameter selection, multiple output prediction, and cross-validation. Furthermore, proposed algorithms lead to notably better performance in many preference learning tasks considered.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a chronic immune-mediated inflammatory disorder of the central nervous system. MS is the most common disabling central nervous system (CNS) disease of young adults in the Western world. In Finland, the prevalence of MS ranges between 1/1000 and 2/1000 in different areas. Fabry disease (FD) is a rare hereditary metabolic disease due to mutation in a single gene coding α-galactosidase A (alpha-gal A) enzyme. It leads to multi-organ pathology, including cerebrovascular disease. Currently there are 44 patients with diagnosed FD in Finland. Magnetic resonance imaging (MRI) is commonly used in the diagnostics and follow-up of these diseases. The disease activity can be demonstrated by occurrence of new or Gadolinium (Gd)-enhancing lesions in routine studies. Diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) are advanced MR sequences which can reveal pathologies in brain regions which appear normal on conventional MR images in several CNS diseases. The main focus in this study was to reveal whether whole brain apparent diffusion coefficient (ADC) analysis can be used to demonstrate MS disease activity. MS patients were investigated before and after delivery and before and after initiation of diseasemodifying treatment (DMT). In FD, DTI was used to reveal possible microstructural alterations at early timepoints when excessive signs of cerebrovascular disease are not yet visible in conventional MR sequences. Our clinical and MRI findings at 1.5T indicated that post-partum activation of the disease is an early and common phenomenon amongst mothers with MS. MRI seems to be a more sensitive method for assessing MS disease activity than the recording of relapses. However, whole brain ADC histogram analysis is of limited value in the follow-up of inflammatory conditions in a pregnancy-related setting because the pregnancy-related physiological effects on ADC overwhelm the alterations in ADC associated with MS pathology in brain tissue areas which appear normal on conventional MRI sequences. DTI reveals signs of microstructural damage in brain white matter of FD patients before excessive white matter lesion load can be observed on conventional MR scans. DTI could offer a valuable tool for monitoring the possible effects of enzyme replacement therapy in FD.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many scientific and engineering applications involve inverting large matrices or solving systems of linear algebraic equations. Solving these problems with proven algorithms for direct methods can take very long to compute, as they depend on the size of the matrix. The computational complexity of the stochastic Monte Carlo methods depends only on the number of chains and the length of those chains. The computing power needed by inherently parallel Monte Carlo methods can be satisfied very efficiently by distributed computing technologies such as Grid computing. In this paper we show how a load balanced Monte Carlo method for computing the inverse of a dense matrix can be constructed, show how the method can be implemented on the Grid, and demonstrate how efficiently the method scales on multiple processors. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study analyzes the placement, services, and teaching methods of students who are deaf with additional disabilities. Through this analysis, these students are compared to students with multiple disabilities, not including deafness.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The integration of nanostructured films containing biomolecules and silicon-based technologies is a promising direction for reaching miniaturized biosensors that exhibit high sensitivity and selectivity. A challenge, however, is to avoid cross talk among sensing units in an array with multiple sensors located on a small area. In this letter, we describe an array of 16 sensing units, of a light-addressable potentiometric sensor (LAPS), which was made with layer-by-Layer (LbL) films of a poly(amidomine) dendrimer (PAMAM) and single-walled carbon nanotubes (SWNTs), coated with a layer of the enzyme penicillinase. A visual inspection of the data from constant-current measurements with liquid samples containing distinct concentrations of penicillin, glucose, or a buffer indicated a possible cross talk between units that contained penicillinase and those that did not. With the use of multidimensional data projection techniques, normally employed in information Visualization methods, we managed to distinguish the results from the modified LAPS, even in cases where the units were adjacent to each other. Furthermore, the plots generated with the interactive document map (IDMAP) projection technique enabled the distinction of the different concentrations of penicillin, from 5 mmol L(-1) down to 0.5 mmol L(-1). Data visualization also confirmed the enhanced performance of the sensing units containing carbon nanotubes, consistent with the analysis of results for LAPS sensors. The use of visual analytics, as with projection methods, may be essential to handle a large amount of data generated in multiple sensor arrays to achieve high performance in miniaturized systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nesse artigo, tem-se o interesse em avaliar diferentes estratégias de estimação de parâmetros para um modelo de regressão linear múltipla. Para a estimação dos parâmetros do modelo foram utilizados dados de um ensaio clínico em que o interesse foi verificar se o ensaio mecânico da propriedade de força máxima (EM-FM) está associada com a massa femoral, com o diâmetro femoral e com o grupo experimental de ratas ovariectomizadas da raça Rattus norvegicus albinus, variedade Wistar. Para a estimação dos parâmetros do modelo serão comparadas três metodologias: a metodologia clássica, baseada no método dos mínimos quadrados; a metodologia Bayesiana, baseada no teorema de Bayes; e o método Bootstrap, baseado em processos de reamostragem.