960 resultados para Multiple or Simultaneous Equation Models: Time-Series Models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonpoint sources (NPS) pollution from agriculture is the leading source of water quality impairment in U.S. rivers and streams, and a major contributor to lakes, wetlands, estuaries and coastal waters (U.S. EPA 2016). Using data from a survey of farmers in Maryland, this dissertation examines the effects of a cost sharing policy designed to encourage adoption of conservation practices that reduce NPS pollution in the Chesapeake Bay watershed. This watershed is the site of the largest Total Maximum Daily Load (TMDL) implemented to date, making it an important setting in the U.S. for water quality policy. I study two main questions related to the reduction of NPS pollution from agriculture. First, I examine the issue of additionality of cost sharing payments by estimating the direct effect of cover crop cost sharing on the acres of cover crops, and the indirect effect of cover crop cost sharing on the acres of two other practices: conservation tillage and contour/strip cropping. A two-stage simultaneous equation approach is used to correct for voluntary self-selection into cost sharing programs and account for substitution effects among conservation practices. Quasi-random Halton sequences are employed to solve the system of equations for conservation practice acreage and to minimize the computational burden involved. By considering patterns of agronomic complementarity or substitution among conservation practices (Blum et al., 1997; USDA SARE, 2012), this analysis estimates water quality impacts of the crowding-in or crowding-out of private investment in conservation due to public incentive payments. Second, I connect the econometric behavioral results with model parameters from the EPA’s Chesapeake Bay Program to conduct a policy simulation on water quality effects. I expand the econometric model to also consider the potential loss of vegetative cover due to cropland incentive payments, or slippage (Lichtenberg and Smith-Ramirez, 2011). Econometric results are linked with the Chesapeake Bay Program watershed model to estimate the change in abatement levels and costs for nitrogen, phosphorus and sediment under various behavioral scenarios. Finally, I use inverse sampling weights to derive statewide abatement quantities and costs for each of these pollutants, comparing these with TMDL targets for agriculture in Maryland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis provides a necessary and sufficient condition for asymptotic efficiency of a nonparametric estimator of the generalised autocovariance function of a Gaussian stationary random process. The generalised autocovariance function is the inverse Fourier transform of a power transformation of the spectral density, and encompasses the traditional and inverse autocovariance functions. Its nonparametric estimator is based on the inverse discrete Fourier transform of the same power transformation of the pooled periodogram. The general result is then applied to the class of Gaussian stationary ARMA processes and its implications are discussed. We illustrate that for a class of contrast functionals and spectral densities, the minimum contrast estimator of the spectral density satisfies a Yule-Walker system of equations in the generalised autocovariance estimator. Selection of the pooling parameter, which characterizes the nonparametric estimator of the generalised autocovariance, controlling its resolution, is addressed by using a multiplicative periodogram bootstrap to estimate the finite-sample distribution of the estimator. A multivariate extension of recently introduced spectral models for univariate time series is considered, and an algorithm for the coefficients of a power transformation of matrix polynomials is derived, which allows to obtain the Wold coefficients from the matrix coefficients characterizing the generalised matrix cepstral models. This algorithm also allows the definition of the matrix variance profile, providing important quantities for vector time series analysis. A nonparametric estimator based on a transformation of the smoothed periodogram is proposed for estimation of the matrix variance profile.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Machine learning is widely adopted to decode multi-variate neural time series, including electroencephalographic (EEG) and single-cell recordings. Recent solutions based on deep learning (DL) outperformed traditional decoders by automatically extracting relevant discriminative features from raw or minimally pre-processed signals. Convolutional Neural Networks (CNNs) have been successfully applied to EEG and are the most common DL-based EEG decoders in the state-of-the-art (SOA). However, the current research is affected by some limitations. SOA CNNs for EEG decoding usually exploit deep and heavy structures with the risk of overfitting small datasets, and architectures are often defined empirically. Furthermore, CNNs are mainly validated by designing within-subject decoders. Crucially, the automatically learned features mainly remain unexplored; conversely, interpreting these features may be of great value to use decoders also as analysis tools, highlighting neural signatures underlying the different decoded brain or behavioral states in a data-driven way. Lastly, SOA DL-based algorithms used to decode single-cell recordings rely on more complex, slower to train and less interpretable networks than CNNs, and the use of CNNs with these signals has not been investigated. This PhD research addresses the previous limitations, with reference to P300 and motor decoding from EEG, and motor decoding from single-neuron activity. CNNs were designed light, compact, and interpretable. Moreover, multiple training strategies were adopted, including transfer learning, which could reduce training times promoting the application of CNNs in practice. Furthermore, CNN-based EEG analyses were proposed to study neural features in the spatial, temporal and frequency domains, and proved to better highlight and enhance relevant neural features related to P300 and motor states than canonical EEG analyses. Remarkably, these analyses could be used, in perspective, to design novel EEG biomarkers for neurological or neurodevelopmental disorders. Lastly, CNNs were developed to decode single-neuron activity, providing a better compromise between performance and model complexity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A susceptible-infective-recovered (SIR) epidemiological model based on probabilistic cellular automaton (PCA) is employed for simulating the temporal evolution of the registered cases of chickenpox in Arizona, USA, between 1994 and 2004. At each time step, every individual is in one of the states S, I, or R. The parameters of this model are the probabilities of each individual (each cell forming the PCA lattice ) passing from a state to another state. Here, the values of these probabilities are identified by using a genetic algorithm. If nonrealistic values are allowed to the parameters, the predictions present better agreement with the historical series than if they are forced to present realistic values. A discussion about how the size of the PCA lattice affects the quality of the model predictions is presented. Copyright (C) 2009 L. H. A. Monteiro et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurements of polar organic marker compounds were performed on aerosols that were collected at a pasture site in the Amazon basin (Rondonia, Brazil) using a high-volume dichotomous sampler (HVDS) and a Micro-Orifice Uniform Deposit Impactor (MOUDI) within the framework of the 2002 LBA-SMOCC (Large-Scale Biosphere Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall, and Climate: Aerosols From Biomass Burning Perturb Global and Regional Climate) campaign. The campaign spanned the late dry season (biomass burning), a transition period, and the onset of the wet season (clean conditions). In the present study a more detailed discussion is presented compared to previous reports on the behavior of selected polar marker compounds, including levoglucosan, malic acid, isoprene secondary organic aerosol (SOA) tracers and tracers for fungal spores. The tracer data are discussed taking into account new insights that recently became available into their stability and/or aerosol formation processes. During all three periods, levoglucosan was the most dominant identified organic species in the PM(2.5) size fraction of the HVDS samples. In the dry period levoglucosan reached concentrations of up to 7.5 mu g m(-3) and exhibited diel variations with a nighttime prevalence. It was closely associated with the PM mass in the size-segregated samples and was mainly present in the fine mode, except during the wet period where it peaked in the coarse mode. Isoprene SOA tracers showed an average concentration of 250 ng m(-3) during the dry period versus 157 ng m(-3) during the transition period and 52 ng m(-3) during the wet period. Malic acid and the 2-methyltetrols exhibited a different size distribution pattern, which is consistent with different aerosol formation processes (i.e., gas-to-particle partitioning in the case of malic acid and heterogeneous formation from gas-phase precursors in the case of the 2-methyltetrols). The 2-methyltetrols were mainly associated with the fine mode during all periods, while malic acid was prevalent in the fine mode only during the dry and transition periods, and dominant in the coarse mode during the wet period. The sum of the fungal spore tracers arabitol, mannitol, and erythritol in the PM(2.5) fraction of the HVDS samples during the dry, transition, and wet periods was, on average, 54 ng m(-3), 34 ng m(-3), and 27 ng m(-3), respectively, and revealed minor day/night variation. The mass size distributions of arabitol and mannitol during all periods showed similar patterns and an association with the coarse mode, consistent with their primary origin. The results show that even under the heavy smoke conditions of the dry period a natural background with contributions from bioaerosols and isoprene SOA can be revealed. The enhancement in isoprene SOA in the dry season is mainly attributed to an increased acidity of the aerosols, increased NO(x) concentrations and a decreased wet deposition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The leaf area index (LAI) of fast-growing Eucalyptus plantations is highly dynamic both seasonally and interannually, and is spatially variable depending on pedo-climatic conditions. LAI is very important in determining the carbon and water balance of a stand, but is difficult to measure during a complete stand rotation and at large scales. Remote-sensing methods allowing the retrieval of LAI time series with accuracy and precision are therefore necessary. Here, we tested two methods for LAI estimation from MODIS 250m resolution red and near-infrared (NIR) reflectance time series. The first method involved the inversion of a coupled model of leaf reflectance and transmittance (PROSPECT4), soil reflectance (SOILSPECT) and canopy radiative transfer (4SAIL2). Model parameters other than the LAI were either fixed to measured constant values, or allowed to vary seasonally and/or with stand age according to trends observed in field measurements. The LAI was assumed to vary throughout the rotation following a series of alternately increasing and decreasing sigmoid curves. The parameters of each sigmoid curve that allowed the best fit of simulated canopy reflectance to MODIS red and NIR reflectance data were obtained by minimization techniques. The second method was based on a linear relationship between the LAI and values of the GEneralized Soil Adjusted Vegetation Index (GESAVI), which was calibrated using destructive LAI measurements made at two seasons, on Eucalyptus stands of different ages and productivity levels. The ability of each approach to reproduce field-measured LAI values was assessed, and uncertainty on results and parameter sensitivities were examined. Both methods offered a good fit between measured and estimated LAI (R(2) = 0.80 and R(2) = 0.62 for model inversion and GESAVI-based methods, respectively), but the GESAVI-based method overestimated the LAI at young ages. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of remote sensing is necessary for monitoring forest carbon stocks at large scales. Optical remote sensing, although not the most suitable technique for the direct estimation of stand biomass, offers the advantage of providing large temporal and spatial datasets. In particular, information on canopy structure is encompassed in stand reflectance time series. This study focused on the example of Eucalyptus forest plantations, which have recently attracted much attention as a result of their high expansion rate in many tropical countries. Stand scale time-series of Normalized Difference Vegetation Index (NDVI) were obtained from MODIS satellite data after a procedure involving un-mixing and interpolation, on about 15,000 ha of plantations in southern Brazil. The comparison of the planting date of the current rotation (and therefore the age of the stands) estimated from these time series with real values provided by the company showed that the root mean square error was 35.5 days. Age alone explained more than 82% of stand wood volume variability and 87% of stand dominant height variability. Age variables were combined with other variables derived from the NDVI time series and simple bioclimatic data by means of linear (Stepwise) or nonlinear (Random Forest) regressions. The nonlinear regressions gave r-square values of 0.90 for volume and 0.92 for dominant height, and an accuracy of about 25 m(3)/ha for volume (15% of the volume average value) and about 1.6 m for dominant height (8% of the height average value). The improvement including NDVI and bioclimatic data comes from the fact that the cumulative NDVI since planting date integrates the interannual variability of leaf area index (LAI), light interception by the foliage and growth due for example to variations of seasonal water stress. The accuracy of biomass and height predictions was strongly improved by using the NDVI integrated over the two first years after planting, which are critical for stand establishment. These results open perspectives for cost-effective monitoring of biomass at large scales in intensively-managed plantation forests. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation submitted in the fufillment of the requirements for the Degree of Master in Biomedical Engineering

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This note develops a flexible methodology for splicing economic time series that avoids the extreme assumptions implicit in the procedures most commonly used in the literature. It allows the user to split the required correction to the older of the series being linked between its levels and growth rates on the basis what he knows or conjectures about the persistence of the factors that account for the discrepancy between the two series that emerges at their linking point. The time profile of the correction is derived from the assumption that the error in the older series reflects the inadequate coverage of emerging sectors or activities that grow faster than the aggregate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Empirical literature on the analysis of the efficiency of measures for reducing persistent government deficits has mainly focused on the direct explanation of deficit. By contrast, this paper aims at modeling government revenue and expenditure within a simultaneous framework and deriving the fiscal balance (surplus or deficit) equation as the difference between the two variables. This setting enables one to not only judge how relevant the explanatory variables are in explaining the fiscal balance but also understand their impact on revenue and/or expenditure. Our empirical results, obtained by using a panel data set on Swiss Cantons for the period 1980-2002, confirm the relevance of the approach followed here, by providing unambiguous evidence of a simultaneous relationship between revenue and expenditure. They also reveal strong dynamic components in revenue, expenditure, and fiscal balance. Among the significant determinants of public fiscal balance we not only find the usual business cycle elements, but also and more importantly institutional factors such as the number of administrative units, and the ease with which people can resort to political (direct democracy) instruments, such as public initiatives and referendum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to evaluate the seasonal variation of soil cover and rainfall erosivity, and their influences on the revised universal soil loss equation (Rusle), in order to estimate watershed soil losses in a temporal scale. Twenty-two TM Landsat 5 images from 1986 to 2009 were used to estimate soil use and management factor (C factor). A corresponding rainfall erosivity factor (R factor) was considered for each image, and the other factors were obtained using the standard Rusle method. Estimated soil losses were grouped into classes and ranged from 0.13 Mg ha-1 on May 24, 2009 (dry season) to 62.0 Mg ha-1 on March 11, 2007 (rainy season). In these dates, maximum losses in the watershed were 2.2 and 781.5 Mg ha-1 , respectively. Mean annual soil loss in the watershed was 109.5 Mg ha-1 , but the central area, with a loss of nearly 300.0 Mg ha-1 , was characterized as a site of high water-erosion risk. The use of C factor obtained from remote sensing data, associated to corresponding R factor, was fundamental to evaluate the soil erosion estimated by the Rusle in different seasons, unlike of other studies which keep these factors constant throughout time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: In the context of the European Surveillance of Congenital Anomalies (EUROCAT) surveillance response to the 2009 influenza pandemic, we sought to establish whether there was a detectable increase of congenital anomaly prevalence among pregnancies exposed to influenza seasons in general, and whether any increase was greater during the 2009 pandemic than during other seasons. METHODS: We performed an ecologic time series analysis based on 26,967 pregnancies with nonchromosomal congenital anomaly conceived from January 2007 to March 2011, reported by 15 EUROCAT registries. Analysis was performed for EUROCAT-defined anomaly subgroups, divided by whether there was a prior hypothesis of association with influenza. Influenza season exposure was based on World Health Organization data. Prevalence rate ratios were calculated comparing pregnancies exposed to influenza season during the congenital anomaly-specific critical period for embryo-fetal development to nonexposed pregnancies. RESULTS: There was no evidence for an increased overall prevalence of congenital anomalies among pregnancies exposed to influenza season. We detected an increased prevalence of ventricular septal defect and tricuspid atresia and stenosis during pandemic influenza season 2009, but not during 2007-2011 influenza seasons. For congenital anomalies, where there was no prior hypothesis, the prevalence of tetralogy of Fallot was strongly reduced during influenza seasons. CONCLUSIONS: Our data do not suggest an overall association of pandemic or seasonal influenza with congenital anomaly prevalence. One interpretation is that apparent influenza effects found in previous individual-based studies were confounded by or interacting with other risk factors. The associations of heart anomalies with pandemic influenza could be strain specific.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Study design: A retrospective study of image guided cervical implant placement precision. Objective: To describe a simple and precise classification of cervical critical screw placement. Summary of Background Data: "Critical" screw placement is defined as implant insertion into a bone corridor which is surrounded circumferentially by neurovascular structures. While the use of image guidance has improved accuracy, there is currently no classification which provides sufficient precision to assess the navigation success of critical cervical screw placement. Methods: Based on postoperative clinical evaluation and CT imaging, the orthogonal view evaluation method (OVEM) is used to classify screw accuracy into grade I (no cortical breach), grade la (screw thread cortical breach), grade II (internal diameter cortical breach) and grade III (major cortical breach causing neural or vascular injury). Grades II and III are considered to be navigation failures, after accounting for bone corridor / screw mismatch (minimal diameter of targeted bone corridor being smaller than an outer screw diameter). Results: A total of 276 screws from 91 patients were classified into grade I (64.9%), grade la (18.1%), and grade II (17.0%). No grade III screw was observed. The overall rate of navigation failure was 13%. Multiple logistic regression indicated that navigational failure was significantly associated with the level of instrumentation and the navigation system used. Navigational failure was rare (1.6%) when the margin around the screw in the bone corridor was larger than 1.5 mm. Conclusions: OVEM evaluation appears to be a useful tool to assess the precision of critical screw placement in the cervical spine. The OVEM validity and reliability need to be addressed. Further correlation with clinical outcomes will be addressed in future studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chaotic behaviour is one of the hardest problems that can happen in nonlinear dynamical systems with severe nonlinearities. It makes the system's responses unpredictable. It makes the system's responses to behave similar to noise. In some applications it should be avoided. One of the approaches to detect the chaotic behaviour is nding the Lyapunov exponent through examining the dynamical equation of the system. It needs a model of the system. The goal of this study is the diagnosis of chaotic behaviour by just exploring the data (signal) without using any dynamical model of the system. In this work two methods are tested on the time series data collected from AMB (Active Magnetic Bearing) system sensors. The rst method is used to nd the largest Lyapunov exponent by Rosenstein method. The second method is a 0-1 test for identifying chaotic behaviour. These two methods are used to detect if the data is chaotic. By using Rosenstein method it is needed to nd the minimum embedding dimension. To nd the minimum embedding dimension Cao method is used. Cao method does not give just the minimum embedding dimension, it also gives the order of the nonlinear dynamical equation of the system and also it shows how the system's signals are corrupted with noise. At the end of this research a test called runs test is introduced to show that the data is not excessively noisy.