945 resultados para Multiobjective evolutionary algorithms


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The research literature on metalieuristic and evolutionary computation has proposed a large number of algorithms for the solution of challenging real-world optimization problems. It is often not possible to study theoretically the performance of these algorithms unless significant assumptions are made on either the algorithm itself or the problems to which it is applied, or both. As a consequence, metalieuristics are typically evaluated empirically using a set of test problems. Unfortunately, relatively little attention has been given to the development of methodologies and tools for the large-scale empirical evaluation and/or comparison of metaheuristics. In this paper, we propose a landscape (test-problem) generator that can be used to generate optimization problem instances for continuous, bound-constrained optimization problems. The landscape generator is parameterized by a small number of parameters, and the values of these parameters have a direct and intuitive interpretation in terms of the geometric features of the landscapes that they produce. An experimental space is defined over algorithms and problems, via a tuple of parameters for any specified algorithm and problem class (here determined by the landscape generator). An experiment is then clearly specified as a point in this space, in a way that is analogous to other areas of experimental algorithmics, and more generally in experimental design. Experimental results are presented, demonstrating the use of the landscape generator. In particular, we analyze some simple, continuous estimation of distribution algorithms, and gain new insights into the behavior of these algorithms using the landscape generator.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As an alternative to traditional evolutionary algorithms (EAs), population-based incremental learning (PBIL) maintains a probabilistic model of the best individual(s). Originally, PBIL was applied in binary search spaces. Recently, some work has been done to extend it to continuous spaces. In this paper, we review two such extensions of PBIL. An improved version of the PBIL based on Gaussian model is proposed that combines two main features: a new updating rule that takes into account all the individuals and their fitness values and a self-adaptive learning rate parameter. Furthermore, a new continuous PBIL employing a histogram probabilistic model is proposed. Some experiments results are presented that highlight the features of the new algorithms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Swarm intelligence is a popular paradigm for algorithm design. Frequently drawing inspiration from natural systems, it assigns simple rules to a set of agents with the aim that, through local interactions, they collectively solve some global problem. Current variants of a popular swarm based optimization algorithm, particle swarm optimization (PSO), are investigated with a focus on premature convergence. A novel variant, dispersive PSO, is proposed to address this problem and is shown to lead to increased robustness and performance compared to current PSO algorithms. A nature inspired decentralised multi-agent algorithm is proposed to solve a constrained problem of distributed task allocation. Agents must collect and process the mail batches, without global knowledge of their environment or communication between agents. New rules for specialisation are proposed and are shown to exhibit improved eciency and exibility compared to existing ones. These new rules are compared with a market based approach to agent control. The eciency (average number of tasks performed), the exibility (ability to react to changes in the environment), and the sensitivity to load (ability to cope with differing demands) are investigated in both static and dynamic environments. A hybrid algorithm combining both approaches, is shown to exhibit improved eciency and robustness. Evolutionary algorithms are employed, both to optimize parameters and to allow the various rules to evolve and compete. We also observe extinction and speciation. In order to interpret algorithm performance we analyse the causes of eciency loss, derive theoretical upper bounds for the eciency, as well as a complete theoretical description of a non-trivial case, and compare these with the experimental results. Motivated by this work we introduce agent "memory" (the possibility for agents to develop preferences for certain cities) and show that not only does it lead to emergent cooperation between agents, but also to a signicant increase in efficiency.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The study here highlights the potential that analytical methods based on Knowledge Discovery in Databases (KDD) methodologies have to aid both the resolution of unstructured marketing/business problems and the process of scholarly knowledge discovery. The authors present and discuss the application of KDD in these situations prior to the presentation of an analytical method based on fuzzy logic and evolutionary algorithms, developed to analyze marketing databases and uncover relationships among variables. A detailed implementation on a pre-existing data set illustrates the method. © 2012 Published by Elsevier Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dynamic Optimization Problems (DOPs) have been widely studied using Evolutionary Algorithms (EAs). Yet, a clear and rigorous definition of DOPs is lacking in the Evolutionary Dynamic Optimization (EDO) community. In this paper, we propose a unified definition of DOPs based on the idea of multiple-decision-making discussed in the Reinforcement Learning (RL) community. We draw a connection between EDO and RL by arguing that both of them are studying DOPs according to our definition of DOPs. We point out that existing EDO or RL research has been mainly focused on some types of DOPs. A conceptualized benchmark problem, which is aimed at the systematic study of various DOPs, is then developed. Some interesting experimental studies on the benchmark reveal that EDO and RL methods are specialized in certain types of DOPs and more importantly new algorithms for DOPs can be developed by combining the strength of both EDO and RL methods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An important problem faced by the oil industry is to distribute multiple oil products through pipelines. Distribution is done in a network composed of refineries (source nodes), storage parks (intermediate nodes), and terminals (demand nodes) interconnected by a set of pipelines transporting oil and derivatives between adjacent areas. Constraints related to storage limits, delivery time, sources availability, sending and receiving limits, among others, must be satisfied. Some researchers deal with this problem under a discrete viewpoint in which the flow in the network is seen as batches sending. Usually, there is no separation device between batches of different products and the losses due to interfaces may be significant. Minimizing delivery time is a typical objective adopted by engineers when scheduling products sending in pipeline networks. However, costs incurred due to losses in interfaces cannot be disregarded. The cost also depends on pumping expenses, which are mostly due to the electricity cost. Since industrial electricity tariff varies over the day, pumping at different time periods have different cost. This work presents an experimental investigation of computational methods designed to deal with the problem of distributing oil derivatives in networks considering three minimization objectives simultaneously: delivery time, losses due to interfaces and electricity cost. The problem is NP-hard and is addressed with hybrid evolutionary algorithms. Hybridizations are mainly focused on Transgenetic Algorithms and classical multi-objective evolutionary algorithm architectures such as MOEA/D, NSGA2 and SPEA2. Three architectures named MOTA/D, NSTA and SPETA are applied to the problem. An experimental study compares the algorithms on thirty test cases. To analyse the results obtained with the algorithms Pareto-compliant quality indicators are used and the significance of the results evaluated with non-parametric statistical tests.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This book constitutes the refereed proceedings of the 14th International Conference on Parallel Problem Solving from Nature, PPSN 2016, held in Edinburgh, UK, in September 2016. The total of 93 revised full papers were carefully reviewed and selected from 224 submissions. The meeting began with four workshops which offered an ideal opportunity to explore specific topics in intelligent transportation Workshop, landscape-aware heuristic search, natural computing in scheduling and timetabling, and advances in multi-modal optimization. PPSN XIV also included sixteen free tutorials to give us all the opportunity to learn about new aspects: gray box optimization in theory; theory of evolutionary computation; graph-based and cartesian genetic programming; theory of parallel evolutionary algorithms; promoting diversity in evolutionary optimization: why and how; evolutionary multi-objective optimization; intelligent systems for smart cities; advances on multi-modal optimization; evolutionary computation in cryptography; evolutionary robotics - a practical guide to experiment with real hardware; evolutionary algorithms and hyper-heuristics; a bridge between optimization over manifolds and evolutionary computation; implementing evolutionary algorithms in the cloud; the attainment function approach to performance evaluation in EMO; runtime analysis of evolutionary algorithms: basic introduction; meta-model assisted (evolutionary) optimization. The papers are organized in topical sections on adaption, self-adaption and parameter tuning; differential evolution and swarm intelligence; dynamic, uncertain and constrained environments; genetic programming; multi-objective, many-objective and multi-level optimization; parallel algorithms and hardware issues; real-word applications and modeling; theory; diversity and landscape analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Over the last few years, more and more heuristic decision making techniques have been inspired by nature, e.g. evolutionary algorithms, ant colony optimisation and simulated annealing. More recently, a novel computational intelligence technique inspired by immunology has emerged, called Artificial Immune Systems (AIS). This immune system inspired technique has already been useful in solving some computational problems. In this keynote, we will very briefly describe the immune system metaphors that are relevant to AIS. We will then give some illustrative real-world problems suitable for AIS use and show a step-by-step algorithm walkthrough. A comparison of AIS to other well-known algorithms and areas for future work will round this keynote off. It should be noted that as AIS is still a young and evolving field, there is not yet a fixed algorithm template and hence actual implementations might differ somewhat from the examples given here

Relevância:

80.00% 80.00%

Publicador:

Resumo:

International audience

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Over the last few years, more and more heuristic decision making techniques have been inspired by nature, e.g. evolutionary algorithms, ant colony optimisation and simulated annealing. More recently, a novel computational intelligence technique inspired by immunology has emerged, called Artificial Immune Systems (AIS). This immune system inspired technique has already been useful in solving some computational problems. In this keynote, we will very briefly describe the immune system metaphors that are relevant to AIS. We will then give some illustrative real-world problems suitable for AIS use and show a step-by-step algorithm walkthrough. A comparison of AIS to other well-known algorithms and areas for future work will round this keynote off. It should be noted that as AIS is still a young and evolving field, there is not yet a fixed algorithm template and hence actual implementations might differ somewhat from the examples given here.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biologically-inspired methods such as evolutionary algorithms and neural networks are proving useful in the field of information fusion. Artificial immune systems (AISs) are a biologically-inspired approach which take inspiration from the biological immune system. Interestingly, recent research has shown how AISs which use multi-level information sources as input data can be used to build effective algorithms for realtime computer intrusion detection. This research is based on biological information fusion mechanisms used by the human immune system and as such might be of interest to the information fusion community. The aim of this paper is to present a summary of some of the biological information fusion mechanisms seen in the human immune system, and of how these mechanisms have been implemented as AISs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pitch Estimation, also known as Fundamental Frequency (F0) estimation, has been a popular research topic for many years, and is still investigated nowadays. The goal of Pitch Estimation is to find the pitch or fundamental frequency of a digital recording of a speech or musical notes. It plays an important role, because it is the key to identify which notes are being played and at what time. Pitch Estimation of real instruments is a very hard task to address. Each instrument has its own physical characteristics, which reflects in different spectral characteristics. Furthermore, the recording conditions can vary from studio to studio and background noises must be considered. This dissertation presents a novel approach to the problem of Pitch Estimation, using Cartesian Genetic Programming (CGP).We take advantage of evolutionary algorithms, in particular CGP, to explore and evolve complex mathematical functions that act as classifiers. These classifiers are used to identify piano notes pitches in an audio signal. To help us with the codification of the problem, we built a highly flexible CGP Toolbox, generic enough to encode different kind of programs. The encoded evolutionary algorithm is the one known as 1 + , and we can choose the value for . The toolbox is very simple to use. Settings such as the mutation probability, number of runs and generations are configurable. The cartesian representation of CGP can take multiple forms and it is able to encode function parameters. It is prepared to handle with different type of fitness functions: minimization of f(x) and maximization of f(x) and has a useful system of callbacks. We trained 61 classifiers corresponding to 61 piano notes. A training set of audio signals was used for each of the classifiers: half were signals with the same pitch as the classifier (true positive signals) and the other half were signals with different pitches (true negative signals). F-measure was used for the fitness function. Signals with the same pitch of the classifier that were correctly identified by the classifier, count as a true positives. Signals with the same pitch of the classifier that were not correctly identified by the classifier, count as a false negatives. Signals with different pitch of the classifier that were not identified by the classifier, count as a true negatives. Signals with different pitch of the classifier that were identified by the classifier, count as a false positives. Our first approach was to evolve classifiers for identifying artifical signals, created by mathematical functions: sine, sawtooth and square waves. Our function set is basically composed by filtering operations on vectors and by arithmetic operations with constants and vectors. All the classifiers correctly identified true positive signals and did not identify true negative signals. We then moved to real audio recordings. For testing the classifiers, we picked different audio signals from the ones used during the training phase. For a first approach, the obtained results were very promising, but could be improved. We have made slight changes to our approach and the number of false positives reduced 33%, compared to the first approach. We then applied the evolved classifiers to polyphonic audio signals, and the results indicate that our approach is a good starting point for addressing the problem of Pitch Estimation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Las organizaciones y sus entornos son sistemas complejos. Tales sistemas son difíciles de comprender y predecir. Pese a ello, la predicción es una tarea fundamental para la gestión empresarial y para la toma de decisiones que implica siempre un riesgo. Los métodos clásicos de predicción (entre los cuales están: la regresión lineal, la Autoregresive Moving Average y el exponential smoothing) establecen supuestos como la linealidad, la estabilidad para ser matemática y computacionalmente tratables. Por diferentes medios, sin embargo, se han demostrado las limitaciones de tales métodos. Pues bien, en las últimas décadas nuevos métodos de predicción han surgido con el fin de abarcar la complejidad de los sistemas organizacionales y sus entornos, antes que evitarla. Entre ellos, los más promisorios son los métodos de predicción bio-inspirados (ej. redes neuronales, algoritmos genéticos /evolutivos y sistemas inmunes artificiales). Este artículo pretende establecer un estado situacional de las aplicaciones actuales y potenciales de los métodos bio-inspirados de predicción en la administración.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The purpose of this paper is to propose a multiobjective optimization approach for solving the manufacturing cell formation problem, explicitly considering the performance of this said manufacturing system. Cells are formed so as to simultaneously minimize three conflicting objectives, namely, the level of the work-in-process, the intercell moves and the total machinery investment. A genetic algorithm performs a search in the design space, in order to approximate to the Pareto optimal set. The values of the objectives for each candidate solution in a population are assigned by running a discrete-event simulation, in which the model is automatically generated according to the number of machines and their distribution among cells implied by a particular solution. The potential of this approach is evaluated via its application to an illustrative example, and a case from the relevant literature. The obtained results are analyzed and reviewed. Therefore, it is concluded that this approach is capable of generating a set of alternative manufacturing cell configurations considering the optimization of multiple performance measures, greatly improving the decision making process involved in planning and designing cellular systems. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study the properties of the well known Replicator Dynamics when applied to a finitely repeated version of the Prisoners' Dilemma game. We characterize the behavior of such dynamics under strongly simplifying assumptions (i.e. only 3 strategies are available) and show that the basin of attraction of defection shrinks as the number of repetitions increases. After discussing the difficulties involved in trying to relax the 'strongly simplifying assumptions' above, we approach the same model by means of simulations based on genetic algorithms. The resulting simulations describe a behavior of the system very close to the one predicted by the replicator dynamics without imposing any of the assumptions of the analytical model. Our main conclusion is that analytical and computational models are good complements for research in social sciences. Indeed, while on the one hand computational models are extremely useful to extend the scope of the analysis to complex scenar