811 resultados para Modelagem analógica
Resumo:
A atual tendência que se apresenta no cenário construtivo mundial compreende a exploração cada vez mais intensa dos espaços urbanos, através de edificações que buscam maximizar a relação área construída / espaço urbano disponível. Desta forma, a dimensão vertical dos edifícios vem tornando-se cada vez mais pronunciada. Associados a isto, o desenvolvimento de materiais mais resistentes e de peso específico reduzido, bem como o uso de técnicas construtivas mais eficientes, conduzem mais e mais a estruturas leves e flexíveis, sujeitas aos efeitos dinâmicos do vento. A eficiência, a segurança e os custos da construção estão diretamente atrelados à exatidão com que estes efeitos dinâmicos do vento são estimados e considerados no momento do projeto destas edificações. As técnicas analíticas para a sua avaliação, quando verificadas através de medições em escala real, têm se mostrado antieconômicas, uma vez que superestimam o valor das respostas, a favor da segurança. Por outro lado, o uso de técnicas experimentais, através da condução de ensaios em túnel de vento com modelos reduzidos, pode-se mostrar bastante eficiente, em termos de previsão de resultados. Essas técnicas precisam ser ainda melhoradas, de modo a incorporar o conhecimento que vem sendo gerado, acompanhando as mudanças pelas quais a Engenharia Civil vem passando. Neste contexto este trabalho se insere. Utilizando como base de conhecimento o trabalho desenvolvimento por outros pesquisadores, um dispositivo aeroelástico para ensaios de edifícios altos frente à ação dinâmica do vento é proposto, construído e testado. Os resultados dos ensaios são aqui comparados com outros estudos realizados sobre o mesmo protótipo, bem como com os procedimentos indicados pela Norma Brasileira NBR-6123/88 e pelo Supplement to the NBCC/85 do Canadá. Indicam a coerência e a viabilidade de utilização das técnicas de modelagem aqui propostas.
Resumo:
Usando dados intradiários dos ativos mais negociados do BOVESPA, este trabalho considerou dois modelos recentemente desenvolvidos na literatura de estimação e previsão de volatilidade realizada. São eles; Heterogeneous Autorregressive Model of Realized Volatility (HAR-RV), desenvolvido por Corsi (2009) e o Mixed Data Sampling (MIDAS-RV), desenvolvido por Ghysels et al. (2004). Através de medidas de comparação de previsão dentro e fora da amostra, constatou-se resultados superiores do modelo MIDAS-RV apenas para previsões dentro da amostra. Para previsões fora da amostra, no entanto, não houve diferença estatisticamente significativa entre os modelos. Também encontram-se evidências que a utilização da volatilidade realizada induz distribuições dos retornos padronizados mais próximas da normal
Resumo:
Com a relevância que o mercado de crédito vem ganhando na economia o presente trabalho se propôs a fazer uma revisão conceitual do risco de crédito. Tendo a perda esperada como o principal componente do risco de crédito, o trabalho se aprofundou nesse tema propondo uma maneira nova para o cálculo da mesma. Da maneira que ela é modelada usualmente pressupoem que os parâmetros de PD e LGD são independentes. Alguns autores questionam essa pressuposição e que, se essa dependência não for levada em conta os cálculos de perda esperada e o capital que deveria ser alocado estarão incorretos. Uma alternativa para tratar a correlação é modelar os dois componentes conjuntamente, ao comparar os resultados do modelo usual com o modelo conjunto conclui-se que o erro da estimativa de perda esperada do modelo conjunto foi menor. Não se pode afirmar que o menor erro na estimativa de perda se deve a correlação entre a PD e LGD, porém ao modelar os parâmetros conjuntamente, retira-se essa forte pressuposição.
Resumo:
Apesar das recentes turbulências nos mercados, a utilização de derivativos negociados fora de uma câmara de compensação tem apresentado rápido crescimento, constituindo um dos maiores componentes do mercado financeiro global. A correta inclusão da estrutura de dependência entre fatores de crédito e mercado é de suma importância no apreçamento do risco de crédito adjacente a exposições geradas por derivativos. Este é o apreçamento, envolvendo simulações de Monte Carlo, feito por uma instituição negociante para determinar a redução no valor do seu portfólio de derivativos devido a possibilidade de falência da contraparte. Este trabalho apresenta um modelo com abordagem paramétrica para lidar com a estrutura de dependência, intuitivo e de fácil implementação. Ao mesmo tempo, os números são contrastados com os resultados obtidos através de uma abordagem neutra ao risco para um portfólio replicante, sob o mesmo processo estocástico. O modelo é aplicado sobre um contrato a termo de câmbio, e diferentes cópulas e fatores de correlação são utilizados no processo estocástico.
Resumo:
Esse trabalho tem o objetivo de estudar o comportamento dos saldos de cadernetas de poupança e fundos de renda fixa no Brasil em função de variações da taxa básica de juros da economia, analisando o impacto de uma queda acentuada na taxa de juros. Avaliamos o potencial de migração de recursos de fundos de renda fixa nesse cenário, que justificou a alteração nas regras de remuneração da caderneta de poupança no Brasil. A modelagem utilizada indicou que esse potencial de migração efetivamente existia.
Resumo:
A agricultura é a atividade econômica mais dependente das condições climáticas. Os eventos climáticos afetam não só os processos metabólicos das plantas, diretamente relacionados à produção vegetal, como também as mais diversas atividades no campo. De acordo com Petr (1990) e Fageria (1992), citados por Hoogenboom (2000), ao redor de 80% da variabilidade da produção agrícola no mundo se deve à variabilidade das condições climáticas durante o ciclo de cultivo, especialmente para as culturas de sequeiro, já que os agricultores não podem exercer nenhum controle sobre esses fenômenos naturais. Além de influenciar o crescimento, o desenvolvimento e a produtividade das culturas, o clima afeta também a relação das plantas com microorganismos, insetos, fungos e bactérias, favore-cendo ou não a ocorrência de pragas e doenças, o que demanda as medidas de controle ade-quadas. Muitas das práticas agrícolas de campo, como o preparo do solo, a semeadura, a adu-bação, a irrigação, as pulverizações, a colheita, entre outras, também dependem de condições de tempo e de umidade no solo específicas para que possam ser realizadas de forma eficiente (PEREIRA et al., 2002). Dada a grande importância do clima para a produção agrícola, o uso de informações meteoro-lógicas e climáticas é fundamental para que a agricultura se torne atividade sustentável (SIVAKUMAR et al., 2000). Neste contexto, a agrometeorologia, ciência interdisciplinar que estuda a influência do tempo e do clima na produção de alimentos, fibras e energia, assume papel estratégico no entendimento e na solução dos problemas enfrentados pela agricultura (MAVI E TUPPER, 2004). Os governos apoiam usualmente a gestão de risco dos agricultores concentrando-se nos riscos imprevisíveis e inevitáveis, possivelmente raros, mas que têm graves consequências (perdas catastróficas) se os agricultores não conseguirem gerir estes riscos sozinhos já que existe nú-mero limitado de opções políticas a serem consideradas, quer a nível interno ou internacional, quando o assunto é referente à alimentação dos concidadãos. A preocupação crescente com o aumento da população mundial, com a degradação dos recur-sos naturais e com a sustentabilidade da agricultura tem exigido maiores esforços no desen-volvimento de melhores estratégias e práticas do uso do solo, a partir do melhor entendimento das relações entre a agricultura e o clima. Nesse sentido, o desenvolvimento de ferramentas que auxiliem o planejamento e o processo de tomadas de decisão que resultem em menores impactos ambientais e no aumento da resiliência da agricultura, tem sido um dos objetivos das instituições governamentais e não gover-namentais ligadas à agricultura, ao ambiente e aos recursos naturais. Sem embargo, as sofisticadas técnicas utilizadas para estimar preços no mercado futuro, as perspectivas relativamente instáveis das commodities agrícolas resultam do pressuposto de que em condições normais, as incertezas associadas ao clima, fatores macroeconômicos, in-tervenções de políticas e o custo da energia, entre outros fatores relevantes, sugerem que os preços dos produtos de base agrossilvipastoris permanecerão imprevisíveis. Mesmo que estratégias de hedging continuem sendo preponderantes no que tange à mitigação do risco financeiro causado pela volatilidade de preços, para a grande maioria das empresas, seguradoras, governos e produtores que dependem dos resultados da lavoura para colher os benefícios financeiros da produção agrícola, como no caso das empresas agrossilvipastoris, a mitigação dos riscos de mercado concomitantemente ao gerenciamento do risco agrometeoro-lógico faz todo sentido. A utilização de uma ferramenta de suporte a decisão baseado em sistemas de informação geo-gráfica é a melhor maneira de aproveitar todo o conhecimento que está disponível para o acompanhamento da produção de alimentos e de energia. Os filtros espaciais utilizados para analisar a situação como um todo, aliados a produtos de informação atualizados em tempo hábil para verificar a produção local permitem monitorar de fato os principais riscos relacio-nados condições agrometeorológicas e o manejo da produção agrícola. A convergência tecnológica entre os sistemas de informação e de suporte à decisão por meio de servidores nas nuvens possibilita hoje automatizar grande parte das análises que se podem obter com base nas informações disponíveis e fazer chegar o conhecimento até o usuário final. As redes de empresas formadas para produzir dados espaciais, seja por meio de satélites de sensoriamento remoto ou redes de estações meteorológicas, estão preparadas para garantir um fluxo contínuo de informação para serem consumidos por usuários deste conhecimento. Os informes deste trabalho e as conclusões desta investigação remetem à hipótese de que a comunicação de informações de forma inteligente, em tempo hábil de serem aplicadas na to-mada de decisão eficiente, permite que os riscos associados aos cultivos sejam mais bem mi-tigados e, portanto gerem valor aos acionistas com ativos ligados ao agronegócio. O maior desafio desta dissertação de mestrado encontra-se em mostrar aos atores do agrone-gócio que, ao dotar os agricultores de meios para que eles possam gerir sua atividade com base nas melhores práticas de manejo agrometeorológico, incentivar a criação de mecanismos que aperfeiçoem a gestão rural e ampliem o acesso à informação, e não apenas auxiliá-los sob a forma de apoio ad hoc e assistência agronômica, de fato se amplia a capacidade de gestão dos riscos associados às atividades agrossilvipastoris.
Resumo:
Esse trabalho tem por objetivo geral o desenvolvimento de uma metodologia de modelagem numérica que represente o escoamento e o fenômeno de mistura em um modelo físico de panela de aciaria de base elíptica. Os objetivos específicos do trabalho são: o estudo dos coeficientes das forças de interação líquido-bolha, dos modelos de turbulência e da mudança do formato da base da panela de circular para elíptica. O escoamento e o fenômeno de mistura foram calculados através do método de Volume Finitos baseado em Elementos por meio do software CFX5.7 da Ansys. Dados da literatura e ensaios em modelo físico, realizados em laboratório, auxiliaram na validação dos modelos numéricos. O estudo dos coeficientes das forças de não-arrasto mostrou que os resultados da distribuição de ar ao longo da altura do banho mudam com a variação dos coeficientes. No final, coeficientes para 3 configurações de panelas em diferentes vazões de ar foram encontrados. Com relação ao estudo dos modelos de turbulência, observou-se que para a solução do escoamento e do fenômeno de mistura em uma panela de base circular, o k-ε é o modelo de turbulência mais indicado. Por outro lado, para uma panela de base elíptica, o modelo RSM mostrou-se o mais adequado. Finalmente, com relação ao estudo da mudança do formato da base da panela, observou-se que os tempos de mistura de uma panela de base elíptica são maiores que uma de base circular e aumentam à medida que a vazão de ar diminui.
Resumo:
Após a crise financeira de 2008, é perceptível a intensificação de esforços globais para aperfeiçoar métodos de avaliação de risco e ajuste de exposição de capital para tornar o sistema financeiro mundial mais sólido e consistente. O objetivo deste trabalho é propor um modelo de estimação de curvas de crédito privado no Brasil, aplicando a modelagem paramétrica de Nelson & Siegel (1987) a uma amostra de preços de debêntures. Os resultados obtidos poderão ser utilizados para auxiliar reguladores e profissionais de mercado com análises de risco, apreçamento de ativos ilíquidos e percepção de expectativas.
Resumo:
As perdas trabalhistas nas Instituições Financeiras representam um valor considerável que devem ser consideradas no modelo de capital regulatório para risco operacional, segundo Basileia. A presente dissertação demonstra uma forma de mensurar o risco às quais as Instituições Financeiras estão expostas nesse tipo de perdas. Diversos tipos de distribuições são analisados conforme sua aderência tanto na frequência como na severidade das perdas. Para os valores de frequência, foi obtida uma amostra de dados real, enquanto para a severidade foram utilizados valores obtidos de relatórios de instituto de pesquisa que serviram de insumo para os cálculos de ações trabalhistas conforme legislação brasileira vigente na CLT (Consolidação das Leis do Trabalho).
Resumo:
O trabalho tem como objetivo aplicar uma modelagem não linear ao Produto Interno Bruto brasileiro. Para tanto foi testada a existência de não linearidade do processo gerador dos dados com a metodologia sugerida por Castle e Henry (2010). O teste consiste em verificar a persistência dos regressores não lineares no modelo linear irrestrito. A seguir a série é modelada a partir do modelo autoregressivo com limiar utilizando a abordagem geral para específico na seleção do modelo. O algoritmo Autometrics é utilizado para escolha do modelo não linear. Os resultados encontrados indicam que o Produto Interno Bruto do Brasil é melhor explicado por um modelo não linear com três mudanças de regime, que ocorrem no inicio dos anos 90, que, de fato, foi um período bastante volátil. Através da modelagem não linear existe o potencial para datação de ciclos, no entanto os resultados encontrados não foram suficientes para tal análise.
Resumo:
As técnicas qualitativas disponiveis para a modelagem de cenários têm sido reconhecidas pela extrema limitação, evidenciada no principio das atividades do processo, como a fase inicial de concepção. As principais restrições têm sido: • inexistência de uma ferramenta que teste a consistência estrutural interna do modelo, ou pela utilização de relações econômicas com fundamentação teórica mas sem interface perfeita com o ambiente, ou pela adoção de variações binárias para testes de validação; • fixação "a priori" dos possíveis cenários, geralmente classificados sob três adjetivos - otimista, mais provável e pessimista - enviesados exatamente pelos atributos das pessoas que fornecem esta informação. o trabalho trata da utilização de uma ferramenta para a interação entre uma técnica que auxilia a geração de modelos, suportada pela lógica relacional com variações a quatro valores e expectativas fundamentadas no conhecimento do decisor acerca do mundo real. Tem em vista a construção de um sistema qualitativo de previsão exploratória, no qual os cenários são obtidos por procedimento essencialmente intuitivo e descritivos, para a demanda regional por eletricidade. Este tipo de abordagem - apresentada por J. Gershuny - visa principalmente ao fornecimento de suporte metodológico para a consistência dos cenários gerados qualitativamente. Desenvolvimento e estruturação do modelo são realizados em etapas, partindo-se de uma relação simples e prosseguindo com a inclusão de variáveis e efeitos que melhoram a explicação do modelo. o trabalho apresenta um conjunto de relações para a demanda regional de eletricidade nos principais setores de consumo residencial, comercial e industrial bem como os cenários resultantes das variações mais prováveis das suas componentes exógenas. Ao final conclui-se que esta técnica é útil em modelos que: • incluem variáveis sociais relevantes e de dificil mensuração; • acreditam na importância da consistência externa entre os resultados gerados pelo modelo e aqueles esperados para a tomada de decisões; • atribuem ao decisor a responsabilidade de compreender a fundamentação da estrutura conceitual do modelo. Adotado este procedimento, o autor aqui recomenda que o modelo seja validado através de um procedimento iterativo de ajustes com a participação do decisor. As técnicas quantitativas poderão ser adotadas em seguida, tendo o modelo como elemento de consistência.
Resumo:
Modelos de predição baseados em estimações não-paramétricas continuam em desenvolvimento e têm permeado a comunidade quantitativa. Sua principal característica é que não consideram a priori distribuições de probabilidade conhecidas, mas permitem que os dados passados sirvam de base para a construção das próprias distribuições. Implementamos para o mercado brasileiro os estimadores agrupados não-paramétricos de Sam e Jiang (2009) para as funções de drift e de difusão do processo estocástico da taxa de juros instantânea, por meio do uso de séries de taxas de juros de diferentes maturidades fornecidas pelos contratos futuros de depósitos interfinanceiros de um dia (DI1). Os estimadores foram construídos sob a perspectiva da estimação por núcleos (kernels), que requer para a sua otimização um formato específico da função-núcleo. Neste trabalho, foi usado o núcleo de Epanechnikov, e um parâmetro de suavizamento (largura de banda), o qual é fundamental para encontrar a função de densidade de probabilidade ótima que forneça a estimação mais eficiente em termos do MISE (Mean Integrated Squared Error - Erro Quadrado Integrado Médio) no momento de testar o modelo com o tradicional método de validação cruzada de k-dobras. Ressalvas são feitas quando as séries não possuem os tamanhos adequados, mas a quebra estrutural do processo de difusão da taxa de juros brasileira, a partir do ano 2006, obriga à redução do tamanho das séries ao custo de reduzir o poder preditivo do modelo. A quebra estrutural representa um processo de amadurecimento do mercado brasileiro que provoca em grande medida o desempenho insatisfatório do estimador proposto.
Resumo:
Os leilões para concessão de blocos de petróleo no Brasil utilizam uma equação para formar a pontuação que define o vencedor. Cada participante deve submeter ao leiloeiro um lance composto por três atributos: Bônus de Assinatura (BA), Programa Exploratório Mínimo (PEM) e Conteúdo Local (CL). Cada atributo possui um peso na equação e a nota final de cada participante também depende dos lances ofertados pelos outros participantes. Apesar de leilões de petróleo serem muito estudados na economia, o leilão multi-atributos, do tipo máxima pontuação, ainda é pouco analisado, principalmente como mecanismo de alocação de direitos minerários. Este trabalho destaca a inserção do CL como atributo que transforma a estrutura, do que poderia ser um leilão simples de primeiro preço, em um leilão multi-atributos de máxima pontuação. Demonstra-se como o CL, através da curva de custos do projeto, está relacionado também ao Bônus de Assinatura, outro importante atributo da equação. Para compreender o impacto do fenômeno da inserção do CL, foram criados três casos de leilões hipotéticos, onde, dentre outras simplificações, o programa exploratório mínimo foi fixado para todas as empresas envolvidas. No caso base (Sem CL), simula-se a estrutura de um leilão de primeiro preço, onde apenas o BA define o vencedor do leilão. Já no caso forçado (CLO=CLR), há inserção do atributo CL, sendo o participante obrigado a cumprir o CL ofertado. Por fim, o caso completo (Com Multa) permite que o participante preveja a aplicação de multa por descumprimento do CL ofertado e, caso haja benefício econômico, descumpra efetivamente o CL ofertado. Considerando estes casos, argumenta-se que, apesar do o lucro das empresas e a eficiência do leilão não serem alterados, a inclusão do conteúdo local na estrutura do leilão pode ter reflexos consideráveis na receita do governo.
Resumo:
A escolha da cidade do Rio de Janeiro como sede de grandes eventos esportivos mundiais, a Copa do Mundo de Futebol de 2014 e os Jogos Olímpicos de 2016, colocou-a no centro de investimentos em infraestrutura, mobilidade urbana e segurança pública, com consequente impacto no mercado imobiliário, tanto de novos lançamentos de empreendimentos, quanto na revenda de imóveis usados. Acredita-se que o preço de um imóvel dependa de uma relação entre suas características estruturais como quantidade de quartos, suítes, vagas de garagem, presença de varanda, tal como sua localização, proximidade com centros de trabalho, entretenimento e áreas valorizadas ou degradadas. Uma das técnicas para avaliar a contribuição dessas características para a formação do preço do imóvel, conhecido na Econométrica como Modelagem Hedônica de Preços, é uma aplicação de regressão linear multivariada onde a variável dependente é o preço e as variáveis independentes, as respectivas características que deseja-se modelar. A utilização da regressão linear implica em observar premissas que devem ser atendidas para a confiabilidade dos resultados a serem analisados, tais como independência e homoscedasticidade dos resíduos e não colinearidade entre as variáveis independentes. O presente trabalho objetiva aplicar a modelagem hedônica de preços para imóveis localizados na cidade do Rio de Janeiro em um modelo de regressão linear multivariada, em conjunto com outras fontes de dados para a construção de variáveis de acessibilidade e socioambiental a fim de verificar a relação de importância entre elas para a formação do preço e, em particular, exploramos brevemente a tendência de preços em função da distância a favelas. Em atenção aos pré-requisitos observados para a aplicação de regressão linear, verificamos que a premissa de independência dos preços não pode ser atestada devido a constatação da autocorrelação espacial entre os imóveis, onde não apenas as características estruturais e de acessibilidade são levadas em consideração para a precificação do bem, mas principalmente a influência mútua que os imóveis vizinhos exercem um ao outro.
Resumo:
Modelos para detecção de fraude são utilizados para identificar se uma transação é legítima ou fraudulenta com base em informações cadastrais e transacionais. A técnica proposta no estudo apresentado, nesta dissertação, consiste na de Redes Bayesianas (RB); seus resultados foram comparados à técnica de Regressão Logística (RL), amplamente utilizada pelo mercado. As Redes Bayesianas avaliadas foram os classificadores bayesianos, com a estrutura Naive Bayes. As estruturas das redes bayesianas foram obtidas a partir de dados reais, fornecidos por uma instituição financeira. A base de dados foi separada em amostras de desenvolvimento e validação por cross validation com dez partições. Naive Bayes foram os classificadores escolhidos devido à simplicidade e a sua eficiência. O desempenho do modelo foi avaliado levando-se em conta a matriz de confusão e a área abaixo da curva ROC. As análises dos modelos revelaram desempenho, levemente, superior da regressão logística quando comparado aos classificadores bayesianos. A regressão logística foi escolhida como modelo mais adequado por ter apresentado melhor desempenho na previsão das operações fraudulentas, em relação à matriz de confusão. Baseada na área abaixo da curva ROC, a regressão logística demonstrou maior habilidade em discriminar as operações que estão sendo classificadas corretamente, daquelas que não estão.