972 resultados para Mode of application of probiotics
Resumo:
The purpose of this study was to evaluate the transmittance of seven different composite resins. Ten specimens were prepared (10 mm diameter, 2 mm thickness) for each experimental group, as follows: G1- Charisma® A 2 (Heraeus-Kulzer); G2- Filtek™ Supreme A 2E (3M/ESPE); G3- Filtek™ Supreme A2B (3M/ESPE); G4-Filtek™ Supreme YT (3M/ESPE); G5- Esthet-X® A2 (Dentsply); G6- Esthet-X® YE (Dentsply); G7- Durafill® A 2 (Heraeus-Kulzer) and G8- Filtek™ Z-100 A2 (3M/ESPE). The transmittance mode was measured using a UV-visible spectrophotometer (Cary Instruments) at 400-760 nm. The specimens were evaluated at three different times: zero hour (initial), 24 hours and 10 days after immersion in artificial saliva. The differences in transmittance were determined by two-way analysis of variance (ANOVA) and Tukey's test. The various composite resins showed significant differences in the wavelength dependence of transmittance. The mean values of transmittance increased significantly, with wavelengths increasing from 400 to 760 nm. The performance of the experimental groups was similar in terms of immersion time, considering that at time zero and after 10 days, all the groups showed similar results, which were statistically higher than the values obtained after 24 hours of immersion. The Filtek™ Supreme YT composite resin presented the highest mean transmittance values along the wavelengths at the three measured times. Esthet-X® YE and Durafill® yielded similar mean transmittance values, which were higher than those of the other groups. This study shows that the transmittance values of composite resins are directly related with the type, size and amount of inorganic filler particles.
Resumo:
The pyrH-encoded uridine 5′-monophosphate kinase (UMPK) is involved in both de novo and salvage synthesis of DNA and RNA precursors. Here we describe Mycobacterium tuberculosis UMPK (MtUMPK) cloning and expression in Escherichia coli. N-terminal amino acid sequencing and electrospray ionization mass spectrometry analyses confirmed the identity of homogeneous MtUMPK. MtUMPK catalyzed the phosphorylation of UMP to UDP, using ATP-Mg 2+ as phosphate donor. Size exclusion chromatography showed that the protein is a homotetramer. Kinetic studies revealed that MtUMPK exhibits cooperative kinetics towards ATP and undergoes allosteric regulation. GTP and UTP are, respectively, positive and negative effectors, maintaining the balance of purine versus pyrimidine synthesis. Initial velocity studies and substrate(s) binding measured by isothermal titration calorimetry suggested that catalysis proceeds by a sequential ordered mechanism, in which ATP binds first followed by UMP binding, and release of products is random. As MtUMPK does not resemble its eukaryotic counterparts, specific inhibitors could be designed to be tested as antitubercular agents. © 2010 Elsevier Inc. All rights reserved.
Resumo:
Exceptionally abundant specimens of Conularia aff. desiderata Hall occur in multiple marine obrution deposits, in a single sixth-order parasequence composed of argillaceous and silty very fine sandstone, in the Otsego Member of the Mount Marion Formation (Middle Devonian, Givetian) in eastern New York State, USA. Associated fossils consist mostly of rhynchonelliform brachiopods but also include bivalve molluscs, orthoconic nautiloids, linguliform brachiopods and gastropods. Many of the brachiopods, bivalve molluscs and conulariids have been buried in situ. Conulariids buried in situ are oriented with their aperture facing obliquely upward and with their long axis inclined at up to 87degree to bedding. Most specimens are solitary, but some occur in V-like pairs or in radial clusters consisting of three specimens, with the component specimens being about equally long or (less frequently) substantially different in length. The compacted apical end of Conularia buried in situ generally rests upon argillaceous sandstone. With one possible exception, none of the examined specimens terminates in a schott (apical wall), and internal schotts appear to be absent. The apical ends of specimens in V-like pairs and radial clusters show no direct evidence of interconnection of their periderms. The apical, middle or apertural region of some inclined specimens abuts or is in close lateral proximity to a recumbent conulariid or to one or more spiriferid brachiopods, some of which have been buried in their original life orientation. The azimuthal bearings of Conularia and nautiloid long axes and the directions in which conulariids open are nonrandom, with conulariids being preferentially aligned between 350 and 50degree and with their apertural end facing north-east, and nautiloids being preferentially aligned between 30 and 70degree. Otsego Member Conularia were erect or semi-erect, epifaunal or partially infaunal animals, the apical end of which rested upon very fine bottom sediment. The origin of V-like pairs and radial clusters remains enigmatic, but it is probable that production of schotts was not a regular feature of this animal's life history. Finally, conulariids and associated fauna were occasionally smothered by distal storm deposits, under the influence of relatively weak bottom currents. © The Palaeontological Association.
Resumo:
The wrist and hand region has been the most commonly used for estimating age and osseous development due to the great number of ossification centers. The aim was to determine which method, Tanner & Whitehouse's (TW3), Greulich & Pyle's (GP) or Eklof & Ringertz's, more closely relates to the chronological age in subjects with Down syndrome with chronological ages between 61 and 180 months, using wrist and hand radiographs. The sample consisted of 85 radiographs, 52 of males and 33 of females. Eklof & Ringertz's method was computerized (Radiomemory). Greulich & Pyle's atlas was used and compared with the wrist and hand radiographs. For the TW3 method, 13 ossification centers were evaluated; for each one of them, there are seven or eight development stages to which scores are assigned; these scores are then added and the results are transformed into osseous age values. No statistically significant differences were observed between the male and female genders for methods TW3 and GP, contrasting with the observed differences for the Eklof & Ringertz method. Correlation (r2) between osseous and chronological ages was 0.8262 for TW3 and 0.7965 for GP, while for the method of Eklof & Ringertz, it was 0.7656 for females and 0.8353 for males. The author concluded that the osseous age assessment method that better related to the chronological age was the TW3, followed by Greulich & Pyle's and Eklof & Ringertz's.
Resumo:
Tuberculosis remains as one of the main cause of mortality worldwide due to a single infectious agent, Mycobacterium tuberculosis. The aroK-encoded M. tuberculosis Shikimate Kinase (MtSK), shown to be essential for survival of bacilli, catalyzes the phosphoryl transfer from ATP to the carbon-3 hydroxyl group of shikimate (SKH), yielding shikimate-3-phosphate and ADP. Here we present purification to homogeneity, and oligomeric state determination of recombinant MtSK. Biochemical and biophysical data suggest that the chemical reaction catalyzed by monomeric MtSK follows a rapid-equilibrium random order of substrate binding, and ordered product release. Isothermal titration calorimetry (ITC) for binding of ligands to MtSK provided thermodynamic signatures of non-covalent interactions to each process. A comparison of steady-state kinetics parameters and equilibrium dissociation constant value determined by ITC showed that ATP binding does not increase the affinity of MtSK for SKH. We suggest that MtSK would more appropriately be described as an aroL-encoded type II shikimate kinase. Our manuscript also gives thermodynamic description of SKH binding to MtSK and data for the number of protons exchanged during this bimolecular interaction. The negative value for the change in constant pressure heat capacity (ΔCp) and molecular homology model building suggest a pronounced contribution of desolvation of non-polar groups upon binary complex formation. Thermodynamic parameters were deconvoluted into hydrophobic and vibrational contributions upon MtSK:SKH binary complex formation. Data for the number of protons exchanged during this bimolecular interaction are interpreted in light of a structural model to try to propose the likely amino acid side chains that are the proton donors to bulk solvent following MtSK:SKH complex formation. © 2013 Rosado et al.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Influence of abutment-to-fixture design on reliability and failure mode of all-ceramic crown systems
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Sensorial and microbiological characteristics of a Brazilian fresh cheese samples with Bifidobacterium animalis subps. lactis as well as samples with this probiotic and polydextrose, a prebiotic ingredient, were evaluated. The addition of this microorganism was studied as: (1) lyophilized probiotic added to cheese curd and (2) by using milk previously fermented by this probiotic to produce the cheese. Cheese samples were microbiologically characterized after 0, 7, 14, 21 and 28 days of storage at a temperature of 4 °C. The microbiological analyses conducted were quantification of total lactic acid bacteria, mesophilic microorganisms, Bif. animalis subps. lactis, coliforms at 30 °C and 45 °C. Affective sensory test was conducted for two different cheese samples (with probiotic and with probiotic and prebiotic) as well as for control one week after manufacturing date. Cheese samples provided acceptable results for coliform counts at 30 °C and 45 °C in compliance with legislation. The cheese samples produced using milk fermented by probiotic showed counts of 107 -108 CFU/g after 28 days of storage, which assures functional property for this product to be claimed.
Resumo:
The peroxisome proliferator-activated receptor gamma (PPAR gamma) is a target for treatment of type II diabetes and other conditions. PPAR gamma full agonists, such as thiazolidinediones (TZDs), are effective insulin sensitizers and anti-inflammatory agents, but their use is limited by adverse side effects. Luteolin is a flavonoid with anti-inflammatory actions that binds PPAR gamma but, unlike TZDs, does not promote adipocyte differentiation. However, previous reports suggested variously that luteolin is a PPAR gamma agonist or an antagonist. We show that luteolin exhibits weak partial agonist/antagonist activity in transfections, inhibits several PPAR gamma target genes in 3T3-L1 cells (LPL, ORL1, and CEBP alpha) and PPAR gamma-dependent adipogenesis, but activates GLUT4 to a similar degree as rosiglitazone, implying gene-specific partial agonism. The crystal structure of the PPAR gamma ligand-binding domain (LBD) reveals that luteolin occupies a buried ligand-binding pocket (LBP) but binds an inactive PPAR gamma LBD conformer and occupies a space near the beta-sheet region far from the activation helix (H12), consistent with partial agonist/antagonist actions. A single myristic acid molecule simultaneously binds the LBP, suggesting that luteolin may cooperate with other ligands to bind PPAR gamma, and molecular dynamics simulations show that luteolin and myristic acid cooperate to stabilize the Omega-loop among H2', H3, and the beta-sheet region. It is noteworthy that luteolin strongly suppresses hypertonicity-induced release of the pro-inflammatory interleukin-8 from human corneal epithelial cells and reverses reductions in transepithelial electrical resistance. This effect is PPAR gamma-dependent. We propose that activities of luteolin are related to its singular binding mode, that anti-inflammatory activity does not require H12 stabilization, and that our structure can be useful in developing safe selective PPAR gamma modulators.
Resumo:
Abstract Background Overflow metabolism is an undesirable characteristic of aerobic cultures of Saccharomyces cerevisiae during biomass-directed processes. It results from elevated sugar consumption rates that cause a high substrate conversion to ethanol and other bi-products, severely affecting cell physiology, bioprocess performance, and biomass yields. Fed-batch culture, where sucrose consumption rates are controlled by the external addition of sugar aiming at its low concentrations in the fermentor, is the classical bioprocessing alternative to prevent sugar fermentation by yeasts. However, fed-batch fermentations present drawbacks that could be overcome by simpler batch cultures at relatively high (e.g. 20 g/L) initial sugar concentrations. In this study, a S. cerevisiae strain lacking invertase activity was engineered to transport sucrose into the cells through a low-affinity and low-capacity sucrose-H+ symport activity, and the growth kinetics and biomass yields on sucrose analyzed using simple batch cultures. Results We have deleted from the genome of a S. cerevisiae strain lacking invertase the high-affinity sucrose-H+ symporter encoded by the AGT1 gene. This strain could still grow efficiently on sucrose due to a low-affinity and low-capacity sucrose-H+ symport activity mediated by the MALx1 maltose permeases, and its further intracellular hydrolysis by cytoplasmic maltases. Although sucrose consumption by this engineered yeast strain was slower than with the parental yeast strain, the cells grew efficiently on sucrose due to an increased respiration of the carbon source. Consequently, this engineered yeast strain produced less ethanol and 1.5 to 2 times more biomass when cultivated in simple batch mode using 20 g/L sucrose as the carbon source. Conclusion Higher cell densities during batch cultures on 20 g/L sucrose were achieved by using a S. cerevisiae strain engineered in the sucrose uptake system. Such result was accomplished by effectively reducing sucrose uptake by the yeast cells, avoiding overflow metabolism, with the concomitant reduction in ethanol production. The use of this modified yeast strain in simpler batch culture mode can be a viable option to more complicated traditional sucrose-limited fed-batch cultures for biomass-directed processes of S. cerevisiae.