962 resultados para Mobile robots -- Remote sensing
Resumo:
With the fast innovation of the hardware and software technologies using rapid prototyping devices, with application in the robotics and automation, more and more it becomes necessary the development of applications based on methodologies that facilitate future modifications, updates and enhancements in the original projected system. This paper presents a conception of mobile robots using rapid prototyping, distributing the several control actions in growing levels of complexity and using resources of reconfigurable computing proposal oriented to embed systems implementation. Software and the hardware are structuralized in independents blocks, with connection through common bus. The study and applications of new structures control that permits good performance in relation to the parameter variations. This kind of controller can be tested on different platform representing the wheeled mobile robots using reprogrammable logic components (FPGA). © 2006 IEEE.
Resumo:
This paper presents the virtual environment implementation for project simulation and conception of supervision and control systems for mobile robots, that are capable to operate and adapting in different environments and conditions. This virtual system has as purpose to facilitate the development of embedded architecture systems, emphasizing the implementation of tools that allow the simulation of the kinematic conditions, dynamic and control, with real time monitoring of all important system points. For this, an open control architecture is proposal, integrating the two main techniques of robotic control implementation in the hardware level: systems microprocessors and reconfigurable hardware devices. The implemented simulator system is composed of a trajectory generating module, a kinematic and dynamic simulator module and of a analysis module of results and errors. All the kinematic and dynamic results shown during the simulation can be evaluated and visualized in graphs and tables formats, in the results analysis module, allowing an improvement in the system, minimizing the errors with the necessary adjustments optimization. For controller implementation in the embedded system, it uses the rapid prototyping, that is the technology that allows, in set with the virtual simulation environment, the development of a controller project for mobile robots. The validation and tests had been accomplish with nonholonomics mobile robots models with diferencial transmission. © 2008 IEEE.
Resumo:
Autonomous robots must be able to learn and maintain models of their environments. In this context, the present work considers techniques for the classification and extraction of features from images in joined with artificial neural networks in order to use them in the system of mapping and localization of the mobile robot of Laboratory of Automation and Evolutive Computer (LACE). To do this, the robot uses a sensorial system composed for ultrasound sensors and a catadioptric vision system formed by a camera and a conical mirror. The mapping system is composed by three modules. Two of them will be presented in this paper: the classifier and the characterizer module. The first module uses a hierarchical neural network to do the classification; the second uses techiniques of extraction of attributes of images and recognition of invariant patterns extracted from the places images set. The neural network of the classifier module is structured in two layers, reason and intuition, and is trained to classify each place explored for the robot amongst four predefine classes. The final result of the exploration is the construction of a topological map of the explored environment. Results gotten through the simulation of the both modules of the mapping system will be presented in this paper. © 2008 IEEE.
Resumo:
Optical remote sensing techniques have obvious advantages for monitoring gas and aerosol emissions, since they enable the operation over large distances, far from hostile environments, and fast processing of the measured signal. In this study two remote sensing devices, namely a Lidar (Light Detection and Ranging) for monitoring the vertical profile of backscattered light intensity, and a Sodar (Acoustic Radar, Sound Detection and Ranging) for monitoring the vertical profile of the wind vector were operated during specific periods. The acquired data were processed and compared with data of air quality obtained from ground level monitoring stations, in order to verify the possibility of using the remote sensing techniques to monitor industrial emissions. The campaigns were carried out in the area of the Environmental Research Center (Cepema) of the University of São Paulo, in the city of Cubatão, Brazil, a large industrial site, where numerous different industries are located, including an oil refinery, a steel plant, as well as fertilizer, cement and chemical/petrochemical plants. The local environmental problems caused by the industrial activities are aggravated by the climate and topography of the site, unfavorable to pollutant dispersion. Results of a campaign are presented for a 24- hour period, showing data of a Lidar, an air quality monitoring station and a Sodar. © 2011 SPIE.
Resumo:
To date, different techniques of navigation for mobile robots have been developed. However, the experimentation of these techniques is not a trivial task because usually it is not possible to reuse the developed control software due to system incompabilities. This paper proposes a software platform that provides means for creating reusable software modules through the standardization of software interfaces, which represent the various robot modules. © 2012 ICROS.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The use of mobile robots turns out to be interesting in activities where the action of human specialist is difficult or dangerous. Mobile robots are often used for the exploration in areas of difficult access, such as rescue operations and space missions, to avoid human experts exposition to risky situations. Mobile robots are also used in agriculture for planting tasks as well as for keeping the application of pesticides within minimal amounts to mitigate environmental pollution. In this paper we present the development of a system to control the navigation of an autonomous mobile robot through tracks in plantations. Track images are used to control robot direction by pre-processing them to extract image features. Such features are then submitted to a support vector machine and an artificial neural network in order to find out the most appropriate route. A comparison of the two approaches was performed to ascertain the one presenting the best outcome. The overall goal of the project to which this work is connected is to develop a real time robot control system to be embedded into a hardware platform. In this paper we report the software implementation of a support vector machine and of an artificial neural network, which so far presented respectively around 93% and 90% accuracy in predicting the appropriate route. (C) 2013 The Authors. Published by Elsevier B.V. Selection and peer review under responsibility of the organizers of the 2013 International Conference on Computational Science
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The best irrigation management depends on accurate estimation of reference evapotranspiration (ET0) and then selection of the appropriate crop coefficient for each phenological stage. However, the evaluation of water productivity on a large scale can be done by using actual evapotranspiration (ETa), determined by coupling agrometeorological and remote sensing data. This paper describes methodologies used for estimating ETa for 20 centerpivots using three different approaches: the traditional FAO crop coefficient (K-c) method and two remote sensing algorithms, one called SEBAL and other named TEIXEIRA. The methods were applied to one Landsat 5 Thematic Mapper image acquired in July 2010 over the Northwest portion of the Sao Paulo State, Brazil. The corn, bean and sugar cane crops are grown under center pivot sprinkler irrigation. ET0 was calculated by the Penman-Monteith method with data from one automated weather station close to the study site. The results showed that for the crops at effective full cover, SEBAL and TEIXEIRA's methods agreed well comparing with the traditional method. However, both remote sensing methods overestimated ETa according to the degree of exposed soil, with the TEIXEIRA method presenting closer ETa values with those resulted from the traditional FAO K-c method. This study showed that remote sensing algorithms can be useful tools for monitoring and establishing realistic K-c values to further determine ETa on a large scale. However, several images during the growing seasons must be used to establish the necessary adjustments to the traditional FAO crop coefficient method.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
[EN] Mediterranean Water eddies (meddies) are thought to play an important climatic role. Nevertheless, their dynamics are not sufficiently known because of difficulties encountered in their observation. Though propagating below the main thermocline, a number of pieces of evidence of sea surface manifestation of meddies are collected. The present work is based on joint in situ and altimetry data analyses to prove that the meddies can be followed with remote sensing data for long periods of time. The in situ observations are based on data from an oceanographic cruise, which crossed three meddies, and reanalysis of historical data sets, including RAFOS floats paths. Suggested methodology permitted us to obtain uninterrupted tracks for several meddies for a period from several months to more than 2 years. It was found that the dynamically calm region to the north of the Azores current presents favorable conditions for meddy tracking. The meddy surface signal may become shattered and difficult to follow during interaction with a strong dynamic structures (the Azores current/surface vortexes) or peaking topography. Theoretical considerations support the observations and lead to the conclusion that the dynamic signature of meddies at the sea surface is an intrinsic property of meddy dynamics
Resumo:
[EN] Between October 2011 and March 2012 submarine volcanic eruptions took place at El Hierro (Canary Islands). The event produced plumes of discolored waters due to the discharge of volcanic matter, gases and fluids. Field samples of Chl-a and sulphur reduced species were collected by some oceanographic cruises (Instituto Español de Oceanografía, IEO).