958 resultados para Methanol electrooxidation
Resumo:
The ab initio structures of 2,7,9-tricarboxypyrroloquinoline quinone (PQQ), semiquinone (PQQH), and dihydroquinone (PQQH2) have been determined and compared with ab initio structures of the (PQQ)Ca2+, (PQQH)Ca2+, and (PQQH2)Ca2+ complexes as well as the x-ray structure of (PQQ)Ca2+ bound at the active site of the methanol dehydrogenase (MDH) of methyltropic bacteria. Plausible mechanisms for the MDH oxidation of methanol involving the (PQQ)Ca2+ complex are explored via ab initio computations and discussed. Considering the reaction of methanol with PQQ in the absence of Ca2+, nucleophilic addition of methanol to the PQQ C-5 carbonyl followed by a retro-ene elimination is deemed unlikely due to large energy barrier. A much more favorable disposition of the methanol C-5 adduct to provide formaldehyde involves proton ionization of the intermediate followed by elimination of methoxide concerted with hydride transfer to the oxygen of the C-4 carbonyl. Much the same transition state is reached if one searches for the transition state beginning with Asp-303–CO2−general-base removal of the methanol proton of the (PQQ)Ca2+O(H)CH3 complex concerted with hydride transfer to the oxygen at C-4. For such a mechanism the role of the Ca2+ moiety would be to (i) contribute to the formation of the ES complex (ii) provide a modest decrease in the pKa of methanol substrate,; and (iii) polarize the oxygen at C-5.
Resumo:
This work studies the use of various single-walled carbon nanotube (SWCNT) buckypapers as catalyst supports for methanol electro-oxidation in acid media. Buckypapers were obtained by vacuum filtration from pristine and oxidized SWCNT suspensions in different liquid media. Pt–Ru catalysts supported on the buckypapers were prepared by multiple potentiostatic pulses using a diluted solution of Pt and Ru salts (2 mM H2PtCl6 + 2 mM RuCl3) in acid media. The resulting materials were characterized via SEM, TEM, EDX and ICP-OES analysis. Well dispersed rounded nanoparticles between 2 and 15 nm were successfully electrodeposited on the SWCNT buckypapers. The ruthenium content in the bimetallic deposits was between 32 and 48 at. %, while the specific surface areas of the catalysts were in the range of 72–113 m2 g−1. It was found that the solvent used to prepare the SWCNT buckypaper films has a strong influence on the catalyst dispersion, particle size and metal loading. Cyclic voltammetry and chronoamperometry experiments point out that the most active electrodes for methanol electro-oxidation were prepared with the buckypaper supports that were obtained from SWCNT dispersions in N-methyl-pyrrolidone.
Resumo:
Surface oxygen groups play a key role on the performance of porous carbon electrodes for electrochemical capacitors in aqueous media. The electrooxidation method in NaCl electrolyte using a filter press cell and dimensionally stable anodes is proposed as a viable process for the generation of oxygen groups on porous carbon materials. The experimental set-up is so flexible that allows the easy modification of carbon materials with different configurations, i.e. cloths and granular, obtaining different degrees of oxidation for both conformations without the requirement of binders and conductivity promoters. After the electrooxidation method, the attained porosity is maintained between 90 and 75% of the initial values. The surface oxygen groups generated can increase the capacitance up to a 30% when compared to the pristine material. However, a severe oxidation is detrimental since it may decrease the conductivity and increase the resistance for ion mobility.
Resumo:
Herein, we explore the immobilization of nickel on various carbon supports and their application as electrocatalysts for the oxidation of propargyl alcohol in alkaline medium. In comparison with massive and nanoparticulated nickel electrode systems, Ni-doped nanoporous carbons provided similar propargyl alcohol conversions for very low metallic contents. Nanoparticulated Ni on various carbon supports gave rise to the highest electrocatalytic activity in terms of product selectivity, with a clear dependence on Ni content. The results point to the importance of controlling the dispersion of the Ni phase within the carbon matrix for a full exploitation of the electroactive area of the metal. Additionally, a change in the mechanism of the propargyl alcohol electrooxidation was noted, which seems to be related to the physicochemical properties of the carbon support as well. Thus, the stereoselectivity of the electrooxidative reaction can be controlled by the active nickel content immobilized on the anode, with a preferential oxidation to (Z)-3-(2-propynoxy)-2-propenoic acid with high Ni-loading, and to propiolic acid with low loading of active Ni sites. Moreover, the formation of (E)-3-(2-propynoxy)-2-propenoic acid was discriminatory irrespective of the experimental conditions and Ni loadings on the carbon matrixes.
Resumo:
The effect of a severe steaming treatment on the physicochemical properties and catalytic performance of H-SAPO-34 molecular sieves during the methanol-to-hydrocarbons (MTH) reaction has been investigated with a combination of scanning transmission X-ray microscopy (STXM), catalytic testing, and bulk characterization techniques, including ammonia temperature programmed desorption and 27Al and 29Si magic angle spinning nuclear magnetic resonance. For this purpose, two samples, namely a calcined and a steamed H-SAPO-34 catalyst powder, have been compared. It has been found that calcined H-SAPO-34 displays a high selectivity towards light olefins, yet shows a poor stability as compared to a zeolite H-ZSM-5 catalyst. Moreover, in situ STXM at the carbon K-edge during the MTH reaction allows construction of nanoscale chemical maps of the hydrocarbon species formed within the H-SAPO-34 aggregates as a function of reaction time and steam post-treatment. It was found that there is an initial preferential formation of coke precursor species within the core of the H-SAPO-34 aggregates. For longer times on stream the formation of the coke precursor species is extended to the outer regions, progressively filling the entire H-SAPO-34 catalyst particle. In contrast, the hydrothermally treated H-SAPO-34 showed similar reaction selectivity, but decreased activity and catalyst stability with respect to its calcined counterpart. These variations in MTH performance are related to a faster and more homogeneous formation of coke precursor species filling up the entire steamed H-SAPO-34 catalyst particle. Finally, the chemical imaging capabilities of the STXM method at the Al and Si K-edge are illustrated by visualizing the silicon islands at the nanoscale before and after steaming H-SAPO-34.
Resumo:
Pt–Pd bimetallic nanoparticles supported on graphene oxide (GO) nanosheets were prepared by a sonochemical reduction method in the presence of polyethylene glycol as a stabilizing agent. The synthetic method allowed for a fine tuning of the particle composition without significant changes in their size and degree of aggregation. Detailed characterization of GO-supported Pt–Pd catalysts was carried out by transmission electron microscopy (TEM), AFM, XPS, and electrochemical techniques. Uniform deposition of Pt–Pd nanoparticles with an average diameter of 3 nm was achieved on graphene nanosheets using a novel dual-frequency sonication approach. GO-supported bimetallic catalyst showed significant electrocatalytic activity for methanol oxidation. The influence of different molar compositions of Pt and Pd (1:1, 2:1, and 3:1) on the methanol oxidation efficiency was also evaluated. Among the different Pt/Pd ratios, the 1:1 ratio material showed the lowest onset potential and generated the highest peak current density. The effect of catalyst loading on carbon paper (working electrode) was also studied. Increasing the catalyst loading beyond a certain amount lowered the catalytic activity due to the aggregation of metal particle-loaded GO nanosheets.
Resumo:
The coupling reaction between aryl bromides and boron reagents is efficiently catalyzed by an in situ generated palladium complex obtained from palladium(II) acetate (0.1 mol%) and 1,3-bis(carboxymethyl)imidazole (0.2 mol%). The catalytic system is very active in protic solvents, especially in methanol. Biaryl derivatives have been prepared in good isolated yields (up to >99%), and additionally styrene and stilbene derivatives have also been prepared by means of this protocol.
Resumo:
In this study, we examine the performance of Cu2O and Cu2O/ZnO surfaces in a filter-press electrochemical cell for the continuous electroreduction of CO2 into methanol. The electrodes are prepared by airbrushing the metal particles onto a porous carbon paper and then are electrochemically characterized by cyclic voltammetry analyses. Particular emphasis is placed on evaluating and comparing the methanol production and Faradaic efficiencies at different loadings of Cu2O particles (0.5, 1 and 1.8 mg cm−2), Cu2O/ZnO weight ratios (1:0.5, 1:1 and 1:2) and electrolyte flow rates (1, 2 and 3 ml min−1 cm−2). The electrodes including ZnO in their catalytic surface were stable after 5 h, in contrast with Cu2O-deposited carbon papers that present strong deactivation with time. The maximum methanol formation rate and Faradaic efficiency for Cu2O/ZnO (1:1)-based electrodes, at an applied potential of −1.3 V vs. Ag/AgCl, were r = 3.17 × 10−5 mol m−2 s−1 and FE = 17.7 %, respectively. Consequently, the use of Cu2O–ZnO mixtures may be of application for the continuous electrochemical formation of methanol, although further research is still required in order to develop highly active, selective and stable catalysts the electroreduction of CO2 to methanol.
Resumo:
A novel polymer electrolyte membrane electrochemical reactor (PEMER) configuration has been employed for the direct electrooxidation of propargyl alcohol (PGA), a model primary alcohol, towards its carboxylic acid derivatives in alkaline medium. The PEMER configuration comprised of an anode and cathode based on nanoparticulate Ni and Pt electrocatalysts, respectively, supported on carbonaceous substrates. The electrooxidation of PGA was performed in 1.0 M NaOH, where a cathode based on a gas diffusion electrode was manufactured for the reduction of oxygen in alkaline conditions. The performance of a novel alkaline anion-exchange membrane based on Chitosan (CS) and Poly(vinyl) alcohol (PVA) in a 50:50 composition ratio doped with a 5 wt.% of poly (4-vinylpyridine) organic ionomer cross-linked, methyl chloride quaternary salt resin (4VP) was assessed as solid polymer electrolyte. The influence of 4VP anionic ionomer loading of 7, 12 and 20 wt.% incorporated into the electrocatalytic layers was examined by SEM and cyclic voltammetry (CV) upon the optimisation of the electroactive area, the mechanical stability and cohesion of the catalytic ink onto the carbonaceous substrate for both electrodes. The performance of the 4VP/CS:PVA membrane was compared with the commercial alkaline anion-exchange membrane FAA −a membrane generally used in direct alcohol alkaline fuel cells- in terms of polarisation plots in alkaline conditions. Furthermore, preparative electrolyses of the electrooxidation of PGA was performed under alkaline conditions of 1 M NaOH at constant current density of 20 mA cm−2 using a PEMER configuration to provide proof of the principle of the feasibility of the electrooxidation of other alcohols in alkaline media. PGA conversion to Z isomers of 3-(2-propynoxy)-2-propenoic acid (Z-PPA) was circa 0.77, with average current efficiency of 0.32. Alkaline stability of the membranes within the PEMER configuration was finally evaluated after the electrooxidation of PGA.
Resumo:
Energy Department, Office of Vehicle and Engine Research and Development, Washington, D.C.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Since the start of last century, methanol synthesis has attracted great interests because of its importance in chemical industries and its potential as an environmentally friendly energy carrier. The catalyst for the methanol synthesis has been a key area of research in order to optimize the reaction process. In the literature, the nature of the active site and the effects of the promoter and support have been extensively investigated. In this updated review, the recent progresses in the catalyst innovation, optimization of the reaction conditions, reaction mechanism, and catalyst performance in methanol synthesis are comprehensively discussed. Key issues of catalyst improvement are highlighted, and areas of priority in R&D are identified in the conclusions.