951 resultados para Metal ceramic alloys
Resumo:
A theoretical model about the size-dependent interface energy between two thin films with different materials is developed by considering the chemical bonding contribution based on the thermodynamic expressions and the structure strain contribution based on the mechanical characteristics. The interface energy decreases with reducing thickness of thin films, and is determined by such available thermodynamic and mechanical parameters as the melting entropy, the melting enthalpy, the shear modulus of two materials, etc. The predicted interface energies of some metal/MgO and metal/Al2O3 interfaces based on the model are consistent with the results based on the molecular mechanics calculation. Furthermore, the interface fracture properties of Ag/MgO and Ni/Al2O3 based on the atomistic simulation are further compared with each other. The fracture strength and the toughness of the interface with the smaller structure interface energy are both found to be lower. The intrinsic relations among the interface energy, the interface strength, and the fracture toughness are discussed by introducing the related interface potential and the interface stress. The microscopic interface fracture toughness is found to equal the structure interface energy in nanoscale, and the microscopic fracture strength is proportional to the fracture toughness. (C) 2010 American Institute of Physics. [doi:10.1063/1.3501090]
Resumo:
This paper presents results concerning structure and electrochemical characteristics of the La0.67Mg0.33 (Ni0.8Co0.1Mn0.1) (x) (x=2.5-5.0) alloy. It can be found from the result of the Rietveld analyses that the structures of the alloys change obviously with increasing x from 2.5 to 5.0. The main phase of the alloys with x=2.5-3.5 is LaMg2Ni9 phase with a PuNi3-type rhombohedral structure, but the main phase of the alloys with x=4.0-5.0 is LaNi(5)phase with a CaCu5-type hexagonal structure. Furthermore, the phase ratio, lattice parameter and cell volume of the LaMg2Ni9 phase and the LaNi5 phase change with increasing x. The electrochemical studies show that the maximum discharge capacity increases from 214.7 mAh/g (x=2.5) to 391.1 mAh/g (x=3.5) and then decreases to 238.5 mAh/g (x=5.0). As the discharge current density is 1,200 mA/g, the high rate dischargeability (HRD) increases from 51.1% (x=2.5) to 83.7% (x=3.5) and then decreases to 71.6% (x=5.0). Moreover, the exchange current density (I-0) of the alloy electrodes first increases and then decrease with increasing x from 2.5 to 5.0, which is consistent with the variation of the HRD. The cell volume reduces with increasing x in the alloys, which is detrimental to hydrogen diffusion and accordingly decreases the low-temperature dischargeability of the alloy electrodes.
Resumo:
This article describes feasible and improved ways towards enhanced nanowire growth kinetics by reducing the equilibrium solute concentration in the liquid collector phase in a vapor-liquid-solid (VLS) like growth model. Use of bi-metallic alloy seeds (AuxAg1-x) influences the germanium supersaturation for a faster nucleation and growth kinetics. Nanowire growth with ternary eutectic alloys shows Gibbs-Thompson effect with diameter dependent growth rate. In-situ transmission electron microscopy (TEM) annealing experiments directly confirms the role of equilibrium concentration in nanowire growth kinetics and was used to correlate the equilibrium content of metastable alloys with the growth kinetics of Ge nanowires. The shape and geometry of the heterogeneous interfaces between the liquid eutectic and solid Ge nanowires were found to vary as a function of nanowire diameter and eutectic alloy composition.
Resumo:
In this paper, we report the measurements of thermal diffusivity of nano Ag metal dispersed ceramic alumina matrix sintered at different temperatures using laser induced non-destructive photoacoustic technique. Measurements of thermal diffusivity also have been carried out on specimens with various concentration of nano metal. Analysis of the data is done on the basis of one-dimensional model of Rosencwaig and Gersho. The present measurements on the thermal diffusivity of nano metal dispersed ceramic alumina shows that porosity has a great influence on the heat transport and the thermal diffusivity value. The present analysis also shows that the inclusion of nano metal into ceramic matrix increases its interconnectivity and hence the thermal diffusivity value. The present study on the samples sintered at different temperature shows that the porosity of the ceramics varies considerably with the change in sintering temperature. The results are interpreted in terms of phonon assisted heat transfer mechanism and the exclusion of pores with the increase in sintering temperature.
Resumo:
In this paper, we report the measurements of thermal diffusivity of nano Ag metal dispersed ceramic alumina matrix sintered at different temperatures using laser induced non-destructive photoacoustic technique. Measurements of thermal diffusivity also have been carried out on specimens with various concentration of nano metal. Analysis of the data is done on the basis of one-dimensional model of Rosencwaig and Gersho. The present measurements on the thermal diffusivity of nano metal dispersed ceramic alumina shows that porosity has a great influence on the heat transport and the thermal diffusivity value. The present analysis also shows that the inclusion of nano metal into ceramic matrix increases its interconnectivity and hence the thermal diffusivity value. The present study on the samples sintered at different temperature shows that the porosity of the ceramics varies considerably with the change in sintering temperature. The results are interpreted in terms of phonon assisted heat transfer mechanism and the exclusion of pores with the increase in sintering temperature
Resumo:
In this paper, we report the measurements of thermal diffusivity of nano Ag metal dispersed ceramic alumina matrix sintered at different temperatures using laser induced non-destructive photoacoustic technique. Measurements of thermal diffusivity also have been carried out on specimens with various concentration of nano metal. Analysis of the data is done on the basis of one-dimensional model of Rosencwaig and Gersho. The present measurements on the thermal diffusivity of nano metal dispersed ceramic alumina shows that porosity has a great influence on the heat transport and the thermal diffusivity value. The present analysis also shows that the inclusion of nano metal into ceramic matrix increases its interconnectivity and hence the thermal diffusivity value. The present study on the samples sintered at different temperature shows that the porosity of the ceramics varies considerably with the change in sintering temperature. The results are interpreted in terms of phonon assisted heat transfer mechanism and the exclusion of pores with the increase in sintering temperature
Resumo:
In this work, a simple route to prepare carbon supported Pt/C, Pt:Ru/C, Pt:Mo/C and Pt:Ru:Mo/C catalysts is reported. The electrochemical properties of the several carbon materials used as substrates in the absence and in the presence of supported platinum and platinum alloys catalysts were investigated using cyclic voltammetry and employing the thin porous coating electrode technique. The activity of the dispersed catalysts composed of Pt/C with respect to the oxygen reduction and of alloy/C with respect to methanol oxidation was investigated using steady state polarization measurements. The performance with respect to the oxygen reduction reaction of the Pt/C catalyst prepared on heat-treated Vulcan carbon substrate is equivalent to that reported in the literature for the state-of-the-art electrocatysts. Pt:Ru:Mo/C samples prepared in this work presented the higher catalytic effect for methanol electro-oxidation.
Resumo:
Heavy metal oxide (HMO) glasses have received special attention due to their optical, electrical and magnetic properties. The problem with these glasses is their corrosive nature. In this work, three ceramic crucibles (Al 2O 3, SnO 2 and ZrO 2) were tested in the melting of the system 40 PbO-35 BiO 1.5-25 GaO 1.5 (cation-%). After glass melting, crucibles were transversally cut and analyzed by scanning electronic microscopy (SEM), coupled to microanalysis by energy dispersive spectroscopy (EDS). Results indicated that zirconia crucibles presented the highest corrosion, probably due to its smallest grain size. Tin oxide crucibles presented a low corrosion with small penetration of the glass into the crucible. This way, these crucibles are an interesting alternative to melt corrosive glasses in instead of gold or platinum crucibles. It is important to emphasize the lower cost of tin oxide crucibles, compared to gold or platinum ones.
Resumo:
Due to their low cost and high resistance to corrosion, ceramic crucibles can be used for the melting of PBG glasses (PbO-BiO 1.5GaO 1.5). These glasses present good window transmission from ultra-violet to infrared, making their use as optical fibres promising. However, their disadvantage is the high reactivity, leading to the corrosion of different crucibles, including gold and platinum ones. In this work, the corrosion of Al 2O 3, SnO 2 and ZrO 2 crucibles after melting at temperatures varying from 850 to 1000°C, was evaluated by Scanning Electronic Microscopy (SEM) in conjunction with microanalysis by EDS. The lead diffusion profile in the crucible material was obtained. Diffusion coefficients were calculated according to the Fick and Fisher theories. Results indicated that the different crucibles presented similar behaviour: in the region near the interface, diffusion occurs in the volumetric way and in regions away from the interface, diffusion occurs through grain boundary.
Resumo:
The interface formed between the metal and the porcelain of laser-welded Ni-Cr-Mo alloy was studied on a metallurgical basis. The characterization was carried out by using optical microscope, electron scan microscopy and X-ray dispersive spectroscopy techniques and mechanical three-point flexion tests, in the laser-welded region, with and without porcelain. The union of the porcelain with the alloy is possible only after the oxidation of the metallic surface and the subsequent application of a bonding agent known as opaque. The porcelain applied to the base metal and weld bead showed different behaviours - after the flexion test, the base metal showed cracks, while that in the weld bead broke away completely. It was noted that the region subjected to laser welding had lower adherence to the porcelain than the base metal region, due to microstructural refinement of the weld bead. These results can be shown by the X-ray dispersive spectroscopy carried out on the regions studied. The flexion tests demonstrated that the Ni-Cr-Mo alloy subject to laser welding had significant alterations in its mechanical properties after application of the porcelain.
Resumo:
Objective: To assess in vitro the bond strength of a machined surface of a Au-Ti alloy to a veneering ceramic. Method and Materials: Metal strips of the alloy Au 1.7-Ti 0.1-Ir were milled from a semiproduct fabricated by continuous casting and cold forming. For comparison, the same alloy as well as a traditional Au-Pt-Pd-In alloy were used in the as-cast state. Six samples of each group were fabricated for the crack initiation test, according to ISO 9693:1999, by preparing appropriate metal strips that were veneered with ceramic using a standard firing procedure. The crack initiation test was performed in a universal testing machine. Load at fracture was recorded. Means of bond strength were calculated for each group and the results compared by use of a 1-sided Student t test (P < .05). Fracture sites were documented by means of SEM. Results: Bond strength in the 3 groups was in the same order of magnitude. Failure mode was different for both alloys. Failure of the bonding to the Au-Ti alloy predominantly occurred at the alloy-oxide interface, no matter which fabrication process was used. On the Au-Pt-Pd-In alloy, more ceramic residues were observed. Conclusion: The machined alloy Au 1.7-Ti 0.1-Ir provides sufficient bond strength to veneering ceramics, but this has to be proven by a clinical study. (Quintessence Int 2007;38:867-872).
Resumo:
The purpose of this study was to determine the relative rate of corrosion of iron-tin alloys containing low percentages of tin. Since in the world today, a great deal of work is being done to develop large tin deposits and new methods devised to treat these ores, it is possible that the metal will become abundant and will obtain a more important position in the metal industry.