976 resultados para Medical genetics
Resumo:
Robust associations between the dysbindin gene (DTNBP1) and schizophrenia have been demonstrated in many but not all samples, and evidence that this gene particularly predisposes to negative symptoms in this illness has been presented. The current study sought to replicate the previously reported negative symptom associations in an Irish case-control sample. Association between dysbindin and schizophrenia has been established in this cohort, and a factor analysis of the assessed symptoms yielded three factors, Positive, Negative, and Schneiderian. The sequential addition method was applied using UNPHASED to assess the relationship between these symptom factors and the high-risk haplotype. No associations were detected for any of the symptom factors indicating that the dysbindin risk haplotype does not predispose to a particular group of symptoms in this sample. Several possibilities, such as differing risk haplotypes, may explain this finding. (C) 2009 Wiley-Liss, Inc.
Resumo:
Molecular studies support pharmacological evidence that phosphoinositide signaling is perturbed in schizophrenia and bipolar disorder. The phosphatidylinositol-4-phosphate-5-kinase type-II alpha (PIP4K2A) gene is located on chromosome 10p12. This region has been implicated in both diseases by linkage, and PIP4K2A directly by association. Given linkage evidence in the Irish Study of High Density Schizophrenia Families (ISHDSF) to a region including 10p12, we performed an association study between genetic variants at PIP4K2A and disease. No association was detected through single-marker or haplotype analysis of the whole sample. However, stratification into families positive and negative for the ISHDSF schizophrenia high-risk haplotype (HRH) in the DTNBP1 gene and re-analysis for linkage showed reduced amplitude of the 10p12 linkage peak in the DTNBP1 HRH positive families. Association analysis of the stratified sample showed a trend toward association of PIP4K2A SNPs rs1417374 and rs1409395 with schizophrenia in the DTNBP1 HRH positive families. Despite this apparent paradox, our data may therefore suggest involvement of PIP4K2A in schizophrenia in those families for whom genetic variation in DTNBP1 appears also to be a risk factor. This trend appears to arise from under-transmission of common alleles to female cases. Follow-up association analysis in a large Irish schizophrenia case-control control sample (ICCSS) showed significant association with disease of a haplotype comprising these same SNPs rs1417374-rs1409395, again more so in affected females, and in cases with negative family history of the disease. This study supports a minor role for PIP4K2A in schizophrenia etiology in the Irish population. (C) 2009 Wiley-Liss, Inc.
Resumo:
Genetic variation in the serotonin 2A receptor (HTR2A) has been associated with both schizophrenia and suicidal behavior. Our sample comprised 270 Irish high-density schizophrenia families (n = 1,408 subjects, including 755 with psychotic illness). Diagnoses were generated using a modified SCID. All patients who had at least one episode of psychosis were rated on the Operation Criteria Checklist for Psychotic Illness (OPCRIT). Lifetime history of suicidal ideation was determined from medical records and psychiatric interviews and was scored in the OPCRIT. Twelve SNPs were selected for study. Ten of these were tagSNPs derived from HapMap data, along with His452Tyr and T102C. We tested for association with psychotic illness as a whole, as well as stratified by the presence of suicidal ideation, using FBAT and PDTPHASE. Single-marker as well as haplotype-based tests using a
Resumo:
FBXL21 gene encodes an F-box containing protein functioning in the SCIP ubiquitin ligase complex. The role of the F-box protein is to recruit proteins designated for degradation to the ligase complex so they would be ubiquitinated. Using both family and case-control samples, we found consistent associations in and around FBXL21 gene. In the family sample (Irish study of high density schizophrenia families, ISHDSF, 1,350 subjects from 273 families), a minimal PDT P-value of 0.0011 was observed at rs31555. In the case-control sample (Irish case-control study of schizophrenia, ICCSS, 814 cases and 625 controls), significant associations were observed at two markers (rs1859427 P=0.0197, and rs6861170 P=0.0197). In haplotype analyses, haplotype 1-1 (C-T) of rs1859427-rs6861170 was overtransmitted in the ISHDSF (P=0.0437) and was over-represented in the ICCSS (P=0.0177). For both samples, the associated alleles and haplotypes were identical. These data suggested that FBXL21 maybe associated with schizophrenia in the Irish samples. (C) 2008 Wiley-Liss, Inc.
Resumo:
We sought to investigate the contribution of extended runs of homozygosity in a genome-wide association dataset of 1,955 Alzheimer's disease cases and 955 elderly screened controls genotyped for 529,205 autosomal single nucleotide polymorphisms. Tracts of homozygosity may mark regions inherited from a common ancestor and could reflect disease loci if observed more frequently in cases than controls. We found no excess of homozygous tracts in Alzheimer's disease cases compared to controls and no individual run of homozygosity showed association to Alzheimer's disease.
Resumo:
The epsilon-4 allele of apolipoprotein E (APOE) is associated with increased risk of Alzheimer's disease (AD), but the pathogenic mechanism is unknown. The 5-repeat allele of a CGG repeat polymorphism in the 5' untranslated region of the very low-density lipoprotein receptor (VLDL-R) gene, a receptor for apoE, has been found to be associated with increased risk of AD in a Japanese population. Other groups have been unable to replicate this in American Caucasian populations. A case-control study utilizing a clinically well-defined group of late-onset AD patients (n = 108) and age- and sex-matched control subjects (n = 108) from Northern Ireland was performed to test this association in a relatively homogeneous population. The 9,9 genotype of the VLDL-R was found to be significantly increased in patients compared to controls (P = 0.003; Pcorr = 0.035), leading to an increased risk of AD to subjects with this genotype (OR = 3.9; 95% CI, 1.52-11.25). In contrast to results from the Japanese study, the 5-repeat allele was found to be significantly reduced in the patient group when compared to controls (P = 0.008; Pcorr = 0.047). The results from this study suggest that individuals who have the 9,9 genotype of the VLDL-R gene are at increased risk of AD in Northern Ireland.
Resumo:
The ß-amyloid peptide may play a central role in Alzheimer's disease (AD) pathogenesis. We have evaluated variants in seven Aß-degrading genes (ACE, ECE1, ECE2, IDE, MME, PLAU, and TF) for association with AD risk in the Genetic and Environmental Risk in Alzheimer's Disease Consortium 1 (GERAD1) cohort, and with three cognitive phenotypes in the Lothian Birth Cohort 1936 (LBC1936), using 128 and 121 SNPs, respectively. In GERAD1, we identified a significant association between a four-SNP intragenic ECE1 haplotype and risk of AD in individuals that carried at least one APOE e4 allele (P = 0.00035, odds ratio = 1.61). In LBC1936, we identified a significant association between a different two-SNP ECE1 intragenic haplotype and non-verbal reasoning in individuals lacking the APOE e4 allele (P = 0.00036, ß = -0.19). Both results showed a trend towards significance after permutation (0.05 <P <0.10). A follow-up cognitive genetic study evaluated the association of ECE1 SNPs in three additional cohorts of non-demented older people. Meta-analysis of the four cohorts identified the significant association (Z <0.05) of SNPs in the ECE-1b promoter with non-verbal reasoning scores, particularly in individuals lacking the APOE e4 allele. Our genetic findings are not wholly consistent. Nonetheless, the AD associated intronic haplotype is linked to the 338A variant of known ECE1b promoter variant, 338C>A (rs213045). We observed significantly less expression from the 338A variant in two human neuroblastoma cell lines and speculate that this promoter may be subject to tissue-specific regulation.
Resumo:
Usher syndrome, a combination of retinitis pigmentosa (RP) and sensorineural hearing loss with or without vestibular dysfunction, displays a high degree of clinical and genetic heterogeneity. Three clinical subtypes can be distinguished, based on the age of onset and severity of the hearing impairment, and the presence or absence of vestibular abnormalities. Thus far, eight genes have been implicated in the syndrome, together comprising 347 protein-coding exons.
Resumo:
Large samples of multiplex pedigrees will probably be needed to detect susceptibility loci for schizophrenia by linkage analysis. Standardized ascertainment of such pedigrees from culturally and ethnically homogeneous populations may improve the probability of detection and replication of linkage. The Irish Study of High-Density Schizophrenia Families (ISHDSF) was formed from standardized ascertainment of multiplex schizophrenia families in 39 psychiatric facilities covering over 90% of the population in Ireland and Northern Ireland. We here describe a phenotypic sample and a subset thereof, the linkage sample. Individuals were included in the phenotypic sample if adequate diagnostic information, based on personal interview and/or hospital record, was available. Only individuals with available DNA were included in the linkage sample. Inclusion of a pedigree into the phenotypic sample required at least two first, second, or third degree relatives with non-affective psychosis (NAP), one whom had schizophrenia (S) or poor-outcome schizo-affective disorder (PO-SAD). Entry into the linkage sample required DNA samples on at least two individuals with NAP, of whom at least one had S or PO-SAD. Affection was defined by narrow, intermediate, and broad criteria. The phenotypic sample contained 277 pedigrees and 1,770 individuals and the linkage sample 265 pedigrees and 1,408 individuals. Using the intermediate definition of affection, the phenotypic sample contained 837 affected individuals and 526 affected sibling pairs. Parallel figures for the linkage sample were 700 and 420. Individuals with schizophrenia from these multiplex pedigrees resembled epidemiologically sampled cases with respect to age at onset, gender distribution, and most clinical symptoms, although they were more thought-disordered and had a poorer outcome. Power analyses based on the model of linkage heterogeneity indicated that the ISHDSF should be able to detect a major locus that influences susceptibility to schizophrenia in as few as 20% of families. Compared to first-degree relatives of epidemiologically sampled schizophrenic probands, first-degree relatives of schizophrenic members from the ISHDSF had a similar risk for schizotypal personality disorder, affective illness, alcoholism, and anxiety disorder. With sufficient resources, large-scale ascertainment of multiplex schizophrenia pedigrees is feasible, especially in countries with catchmented psychiatric care and stable populations. Although somewhat more severely ill, schizophrenic members of such pedigrees appear to clinically resemble typical schizophrenic patients. Our ascertainment process for multiplex schizophrenia families did not select for excess familial risk for affective illness or alcoholism. With its large sample ascertained in a standardized manner from a relatively homogeneous population, the ISHDSF provides considerable power to detect susceptibility loci for schizophrenia.
Resumo:
In our genomic scan of 265 Irish families with schizophrenia, we have thus far generated modest evidence for the presence of vulnerability genes in three chromosomal regions, i.e., 5q21-q31, 6p24-p22, and 8p22-p21. Outside of those regions, of all markers tested to date, D10S674 produced one of the highest pairwise heterogeneity lod (H-LOD) scores, 3.2 (P = 0.0004), when initially tested on a subset of 88 families. We then tested a total of 12 markers across a region of 32 centimorgans in region 10p15-p11 of all 265 families. The strongest evidence for linkage occurred assuming an intermediate phenotypic definition, and a recessive genetic model. The largest pairwise H-LOD score was found with marker D10S2443 (maximum 1.95, P = 0.005). Using multipoint H-LODs, we found a broad peak (maximum 1.91, P = 0.006) extending over the 11 centimorgans from marker D10S674 to marker D10S1426. Multipoint nonparametric linkage analysis produced a much broader peak, but with the maximum in the same location near D10S2443 (maximum z = 1.88, P = 0.03). Based on estimates from the multipoint analysis, this putative vulnerability locus appears to be segregating in 5-15% of the families studied, but this estimate should be viewed with caution. When evaluated in the context of our genome scan results, the evidence suggests the possibility of a fourth vulnerability locus for schizophrenia in these Irish families, in region 10p15-p11.
Resumo:
Linkage disequilibrium (LD) is a potentially powerful tool for the localization of disease genes for complex disorders. Most prior studies of the relationship between genetic distance and LD have examined only very short distances, focusing on the role of LD in fine-mapping and positional cloning. We examine here the relationship between marker-to-marker (M-M) LD and somewhat greater genetic distances. We analyzed 622 M-M pairings on chromosomes 6p, 8p, and 5q in 265 native Irish pedigrees ascertained for a high density of schizophrenia. LD, significant at the 5% level, was found for 96% of all M-M pairings within 0.5 cM, for 67% within 0.5-1 cM, for 35% within 1-2 cM, for 15% within 2-4 cM, for 8% within 5-10 cM, and for 7% above 10 cM. Thus, in Irish families selected for a high density of schizophrenia, M-M LD may be very common within 0.5 cM and frequent up to distances of 2 cM.
Resumo:
Epistasis may be important in the etiology of schizophrenia. Analysis of epistasis has been important in the positional cloning of a gene involved in the etiology of type II diabetes mellitus. We investigated the importance of epistasis among six linked regions in 268 multiplex pedigrees in the Irish Study of High-Density Schizophrenia Families (ISHDSF) by computing pairwise correlations between nonparametric linkage scores for narrow, intermediate, and broad diagnostic definitions. The linked regions were on chromosomes 2, 4, 5, 6, 8, and 10. No correlation reached our a priori level of statistical significance. Using this statistical approach, we did not find evidence of important epistatic effects among these six regions in the ISHDSF.
Resumo:
Schizophrenia is clinically heterogeneous and multidimensional, but it is not known whether this is due to etiological heterogeneity. Previous studies have not consistently reported association between any specific polymorphisms and clinical features of schizophrenia, and have primarily used case-control designs. We tested for the presence of association between clinical features and polymorphisms in the genes for the serotonin 2A receptor (HT2A), dopamine receptor types 2 and 4, dopamine transporter (SLC6A3), and brain-derived neurotrophic factor (BDNF). Two hundred seventy pedigrees were ascertained on the basis of having two or more members with schizophrenia or poor outcome schizoaffective disorder. Diagnoses were made using a structured interview based on the SCID. All patients were rated on the major symptoms of schizophrenia scale (MSSS), integrating clinical and course features throughout the course of illness. Factor analysis revealed positive, negative, and affective symptom factors. The program QTDT was used to implement a family-based test of association for quantitative traits, controlling for age and sex. We found suggestive evidence of association between the His452Tyr polymorphism in HT2A and affective symptoms (P = 0.02), the 172-bp allele of BDNF and negative symptoms (P = 0.04), and the 480-bp allele in SLC6A3 (= DAT1) and negative symptoms (P = 0.04). As total of 19 alleles were tested, we cannot rule out false positives. However, given prior evidence of involvement of the proteins encoded by these genes in psychopathology, our results suggest that more attention should be focused on the impact of these alleles on clinical features of schizophrenia.
Resumo:
The regulator of the G-protein signaling 4 (RGS4) gene was shown to have a different expression pattern in schizophrenia patients in a microarray study. A family-based study subsequently implicated the association of this gene with schizophrenia. We replicated the study with our sample from the Irish Study of High Density Schizophrenia Families (ISHDSF). Single marker transmission disequilibrium tests (TDT) for the four core SNPs showed modest association for SNP 18 (using a narrow diagnostic approach with FBAT P = 0.044; with PDT P = 0.0073) and a trend for SNP 4 (with FBAT P = 0.1098; with PDT P = 0.0249). For SNP 1 and 7, alleles overtransmitted to affected subjects were the same as previously reported. Haplotype analyses suggested that haplotype G-G-G for SNP1-4-18, which is the most abundant haplotype (42.3%) in the Irish families, was associated with the disease (narrow diagnosis, FBAT P = 0.0061, PDT P = 0.0498). This was the same haplotype implicated in the original study. While P values were not corrected for multiple testing because of the clear prior hypothesis, these results could be interpreted as supporting evidence for the association between RGS4 and schizophrenia.