569 resultados para Mecanica ondulatoria


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The search for alternative materials with lower density, reduction in heat transfer and propagation of noise associated with the ease of handling and application in concrete structures, represents an enormous challenge in the formulation and knowledge of the performance of self-compacting lightweight concrete, which has technology little known nationally, and appears on the international scene as an innovative material and alternative to conventional concrete. Based on these, this study set out to study self-compacting lightweight concrete made with two distinct grades of expanded clay associated with the addition of plasticizing/superplasticizers additives and mineral additions of metakaolin and bagasse ash of sugar cane. There is also an object of study, evaluation of pozzolanic activity of mineral admixtures and their influence on the durability characteristics of concrete. The rheological, physical, mechanical and microstructural analysis in this study served as basis in the classification of concretes autoadensáveis, targeting the national technical requirements for their classification in the category autoadensável and lightweight structural. The inclusion of mineral admixtures (metakaolin and bagasse ash of sugar cane), partial replacement of cement, pozzolanic activity and demonstrated maintenance of mechanical properties through the filler effect, a reduction of up to 76% of the nitrogen gas permeability in blend with 20% bagasse ash. All concretes had rheology (cohesion and consistency) suitable for self-adensability as well as strength and density inherent structural lightweight concrete without presenting phenomena of segregation and exudation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The production of roof tiles in the state of Rio Grande do Norte accounts for around 60% of the total of ceramic pieces produced. There is a need for investment to improve quality and productivity, thereby promoting technological innovations. Accordingly, the aim of this study is to determine the effect of kaolin, potassium feldspar and quartz in two standard formulations, as well as the effect of sintering temperature on the technological properties of linear firing shrinkage, water absorption and bending rupture stress, by fitting the statistical model and using multiple linear regression to assess the relationship between technological properties and independent variables. The raw materials were characterized using the following techniques: X-ray fluorescence (XRF), X-ray diffraction (XRF), rational analysis (RA), differential thermal analysis (DTA) and granulometric analysis (GA). The test specimens were compacted by uniaxial pressure (25 MPa), dried in a stove at 110 ºC for 24 hours and sinterized at 850 ºC, 950 ºC and 1050 ºC and held isothermal for 30 minutes. The results obtained indicate that the addition of kaolin to two standard formulations (M and R) promoted a reduction in water absorption values and an increase in bending rupture stress values. The sintering temperatures for group M that resulted in the lowest linear firing shrinkage and water absorption values were 850 ºC and 950 ºC, respectively, and the highest bending rupture stress values were reached at a temperature of 950 ºC. In the case of group R, the sintering temperature that obtained the lowest water absorption and linear firing shrinkage values was 850 ºC, and the highest bending rupture stress values were attained at a temperature of 1050 ºC. This work explains the statistical approach used to fit the model that describes the relationship between the technological properties and percentage of kaolin, quartz and feldspar, as well as the models that enable predictions, provided that the lower and upper limits of the percentage of clay minerals, flux and quartz used in this study are respected. Statistica 6 software was used and results were obtained by stepwise forward regression

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work has for objective study compared the characteristics and technological properties of ceramic bodies from the region of Seridó-RN. The region under study has identified 23 cities where they were 80 ceramics industries. To define the universe of search, there was a survey of pottery that are part of APL Seridó next to the IEL. The characteristics and operating conditions of ceramics industries of the region were identified through a socio-economic questionnaire applied locally, which addressed issues such as: profiles of companies, production process etc. The analysis of information collected from 24 companies identified in seven cities shows that the vast majority of industries is small, with family structure, obsolete equipment and labo, little qualified. Most of the pottery works with low technical knowledge, poor control of the production process and product technology. The raw collected were submitted to analysis of X ray diffraction, chemical composition, termical analysis, particle size distribution and plasticity. Then were produced five formulations and made by uniaxial pressure at 25 MPa for firing in temperatures varying from 850 to 1050 °C. The firing technological properties evaluated were: mass loss to fire, lineal shrinkage, apparent density, apparent porosity, water absorption and flexural strength (3 points). The results indicated that the raw materials from the region have significant similarities in the composition chemical and mineralogical. Furthermore, it indicates the possibility of the use of cycles of firing faster and efficient than the current, limited to some clay mass burning of certain conditions

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The obtaining of ceramic materials from polymeric precursors is subject of numerous studies due to lower energy costs compared to conventional processing. The aim of this study is to investigate and improve the mechanism for obtaining ceramic matrix composite (CMC) based on SiOC/Al2O3/TiC by pyrolysis of polysiloxane in the presence of an active filler and inert filler in the pyrolysis temperature lower than the usually adopted for this technique, with greater strength. It also investigates the influence of pyrolysis temperature, the content of Alas active filler, the presence of infiltrating agents (Al, glass and polymer) after pyrolysis, temperature and infiltration time on some physical and mechanical properties. Alumina is used as inert filler and Al and Ti as active filler in the pyrolysis. Aluminum, glass and polysiloxane are used as agents infiltrating the post-pyrolysis. The results are analyzed with respect to porosity and bulk density by the Archimedes method, the presence of crystalline phases by X-ray diffraction (XRD) and microstructure by scanning electron microscopy (SEM). The ceramic pyrolyzed between 850 °C 1400 °C contain porosity 15% to 33%, density 2.34 g/cm3 and flexural strength at 4 points from 30 to 42 MPa. The microstructure features are porous, with an array of Al2O3 reinforced by TiC particles and AlTi3. The infiltration post-pyrolysis reveals decrease in porosity and increase density and strength. The composites have potential applications where thermal stability is the main requirement

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Initially concentrated in some poles at the South and Southeast regions of Brazil, the ceramic tiles industry became wide during the 80 s decade, with a disconcentration industrial and regional pulverization. The competitiveness in the ceramic tiles internal and external consumers markets, it has debtor the industries to invest in sophisticated products each time more, either in design or the technology, but, mainly, in its final properties. Amongst the diverse types of ceramic coating, the porcelanato if has detached had to its process of technological production and excellent characteristics techniques. The Porcelanato is currently the material for coatings that presents the best technical and aesthetic features when compared with others ceramics found on the market. The chemical composition and the others raw materials characteristics have an importance that must to be ally to the inherent characteristics of fabrication process, essentially those related to the cycle of burning. This work had as purpose to develop formularizations of ceramic mass for production of porcelanato without glass coating, pertaining to the group BIa (text of absorption of water ≤ 0.5%) and with resistance superior mechanics 35MPa from raw materials characterized. The ceramic raw materials selected to the development of this study (A1 and A2 clays, feldspate, talc and quartz) were submitted to the following tests: X-ray fluorescence - chemical analysis determination; X-ray diffraction - Analysis of the stages mineralogics; Laser granulometry - size distribution of particles; and Differential thermal analysis - thermal behavior. Were performed tests of absorption of water, lineal retraction of it burns, apparent specific mass and rupture tension the flexing. The results had evidenced that the formularizations that had the A1 clay and talc on its composition were efficient for the porcelanato production remaining their technological characteristics inside of the intervals of variation desired by the Norms of the ABNT

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The search for sustainable technologies that can contribute to reduce energy consumption is a great challenge in the field of insulation materials. In this context, composites manufactured from vegetal sources are an alternative technology. The principal objectives of this work are the development and characterization of a composite composed by the rigid polyurethane foam derived from castor oil (commercially available as RESPAN D40) and sisal fibers. The manufacture of the composite was done with expansion controlled inside a closed mold. The sisal fibers where used in the form of needlepunched nonwoven with a mean density of 1150 g/m2 and 1350 g/m2. The composite characterization was performed through the following tests: thermal conductivity, thermal behavior, thermo gravimetric analysis (TG/DTG), mechanical strength in compression and flexural, apparent density, water absorption in percentile, and the samples morphology was analyzed in a MEV. The density and humidity percentage of the sisal fiber were also determined. The thermal conductivity of the composites was higher than the pure polyurethane foam, the addition of nonwoven sisal fibers will become in a higher level of compact foam, reducing empty spaces (cells) of polyurethane, inducing an increase in k value. The apparent density of the composites was higher than pure polyurethane foam. In the results of water absorption tests, was seen a higher absorption percent of the composites, what is related to the presence of sisal fibers which are hygroscopic. From TG/DTG results, with the addition of sisal fibers reduced the strength to thermal degradation of the composites, a higher loss of mass was observed in the temperature band between 200 and 340 °C, related to urethane bonds decomposition and cellulose degradation and its derivatives. About mechanical behavior in compression and flexural, composites presented a better mechanical behavior than the rigid polyurethane foam. An increase in the amount of sisal fibers induces a higher rigidity of the composites. At the thermal behavior tests, the composites were more mechanically and thermally resistant than some materials commonly used for thermal insulation, they present the same or better results. The density of nonwoven sisal fiber had influence over the insulation grade; this means that, an increaser in sisal fiber density helped to retain the heat

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of polymer based coatings is a promising approach to reduce the corrosion problem in carbon steel pipes used for the transport of oil and gas in the oil industry. However, conventional polymer coatings offer limited properties, which often cannot meet design requirements for this type of application, particularly in regard to use temperature and wear resistance. Polymer nanocomposites are known to exhibit superior properties and, therefore, offer great potential for this type of application. Nevertheless, the degree of enhancement of a particular property is greatly dependent upon the matrix/nanoparticle material system used, the matrix/nanoparticle interfacial bonding and also the state of dispersion of the nanoparticle in the polymer matrix. The objective of the present research is to develop and characterize polymer based nanocomposites to be used as coatings in metallic pipelines for the transportation of oil and natural gas. Epoxy/SiO2 nanocomposites with nanoparticle contents of 2, 4, and 8 wt % were processed using a high-energy mill. Modifications of the SiO2 nanoparticles‟ surfaces with two different silane agents were carried out and their effect on the material properties were investigated. The state of dispersion of the materials processed was studied using Scanning and Transmission Electron Microscopy (SEM and TEM) micrographs. Thermogravimetric analysis (TG) were also conducted to determine the thermal stability of the nanocomposites. In addition, the processed nanocomposites were characterized by dynamic mechanical analysis (DMA) to investigate the effect of nanoparticles content and silane treatment on the viscoelastic properties and on the glass transition temperature. Finally, wear tests of the pin-on-disc type were carried out to determine the effects of the nanoparticles and the silane treatments studied. According to the results, the addition of SiO2 nanoparticles treated with silane increased the thermal stability, the storage modulus and Tg of the epoxy resin and decreased wear rate. This confirms that the interaction between the nanoparticles and the polymer chains plays a critical role on the properties of the nanocomposites

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work proposes a computational methodology to solve problems of optimization in structural design. The application develops, implements and integrates methods for structural analysis, geometric modeling, design sensitivity analysis and optimization. So, the optimum design problem is particularized for plane stress case, with the objective to minimize the structural mass subject to a stress criterion. Notice that, these constraints must be evaluated at a series of discrete points, whose distribution should be dense enough in order to minimize the chance of any significant constraint violation between specified points. Therefore, the local stress constraints are transformed into a global stress measure reducing the computational cost in deriving the optimal shape design. The problem is approximated by Finite Element Method using Lagrangian triangular elements with six nodes, and use a automatic mesh generation with a mesh quality criterion of geometric element. The geometric modeling, i.e., the contour is defined by parametric curves of type B-splines, these curves hold suitable characteristics to implement the Shape Optimization Method, that uses the key points like design variables to determine the solution of minimum problem. A reliable tool for design sensitivity analysis is a prerequisite for performing interactive structural design, synthesis and optimization. General expressions for design sensitivity analysis are derived with respect to key points of B-splines. The method of design sensitivity analysis used is the adjoin approach and the analytical method. The formulation of the optimization problem applies the Augmented Lagrangian Method, which convert an optimization problem constrained problem in an unconstrained. The solution of the Augmented Lagrangian function is achieved by determining the analysis of sensitivity. Therefore, the optimization problem reduces to the solution of a sequence of problems with lateral limits constraints, which is solved by the Memoryless Quasi-Newton Method It is demonstrated by several examples that this new approach of analytical design sensitivity analysis of integrated shape design optimization with a global stress criterion purpose is computationally efficient

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study were conducted experimental procedures for determination of variation of the expandability of rigid polyurethane foam (PUR) from a natural oil polyol (NOP), specifically the Castor oil plant, Ricinus communis, pure and additions of the vermiculite in phase dispersed in different percentage within a range from 0% to 20%, mass replacement. From the information acquired, were defined the parameters for production of bodies of test, plates obtained through controlled expansion, with the final volume fixed. Initially, the plates were subjected to thermal performance tests and evaluated the temperature profiles, to later be extracted samples duly prepared in accordance with the conditions required for each test. Was proceeded then the measurement of the coefficient of thermal conductivity, volumetric capacity heat and thermal diffusivity. The findings values were compared with the results obtained in the tests of thermal performance, contributing to validation of the same. Ultimately, it was investigated the influence that changes in physical-chemical structure of the material had exerted on the variation of thermophysical quantities through gas pycnometry, scanning electron microscopy (SEM) combined with energy dispersive X-ray fluorescence spectroscopy (EDXRF), infrared spectroscopy using Fourier transform (FTIR), thermogravimetric analysis (TGA) and differential thermal analysis (DTA). Based on the results obtained was possible to demonstrate that all load percentage analyzed promoted an increase in the potential expansion (PE) of the resin. In production of the plates, the composites with density near at the free expansion presented high contraction during the cure, being the of higher density adopted as definitive standard. In the thermal performance tests, the heating and cooling curves of the different composites had presented symmetry and values very close for lines of the temperature. The results obtained for the thermophysical properties of composites, showed little difference in respect of pure foam. The percentage of open pores and irregularities in the morphology of the composites were proportionate to the increment of vermiculite. In the interaction between the matrix and dispersed phase, there were no chemical transformations in the region of interface and new compounds were not generated. The composites of PUR-NOP and vermiculite presented thermal insulating properties near the foam pure and percentage significantly less plastic in its composition, to the formulation with 10% of load

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the manufacture of composite, textile materials are being used as reinforcement. Generally, the combination of the matrix with the textile material in the form of fibres or yarns is used depending on their distribution in the web. In the present work, in place of fibres or yarns, a knitted structure in the form of the final product which is defined as preform. The preform is weft knit manufactured with polyester filaments. In the manufacture of composite, polyester resin was used as matrix. The physical and mechanical properties as well as the formability of the weft knit were analysed. The physical and mechanical properties as well as the formability of the knitted structure were analysed. The results obtained on the analysis show that the courses and wales of the weft knit structure and the tensile properties help the formability of the structure and the impregnation of the resin. It could be clearly observed that composite structure in the direction of the courses support more tension than in the direction of the wales. In relation to the three points flexural tests it was possible to note that there was more flexion in the direction of wales, what was expected. It was also possible to note that there are other advantages such as reduction in the loss of materials used, homogeneity in the distribution of the knitted structure in the mould, reduction in the preparation time and also in the reduction in the cost of manufacture

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The process of recycling has been stimulated by the markets for several reasons, mainly on economical and environmental. Several products have been developed from recycled materials that already exist as well as several residues have been studied in different forms of applications. The greater majority of the applications for thermal insulation in the domestic, commercial and industrial systems have been elaborated in the temperature ranges between low to medium reaching up to 180oC. Many materials such as glass wool, rock wool, polystyrene are being used which are aggressive to the environment. Such materials in spite of the effectiveness in the retention of heat flow, they cost more and when discarded take several years to be absorbed by the nature. This way, in order to adapt to a world politics concerning the preservation of the environment, the present study was intended to develop a material composed of natural/biodegradable materials and industrial residues. The development of such a product in the form of a composite material based on tyre scrapes and latex for thermal insulation is presented in this research work. Thermal and physical properties of the tire scrapes as well as latex were studied in order to use them as raw materials for the manufacture of the intended composite to be applied as a thermal insulator in hot and cold systems varying between 0ºC and 200oC, respectively. Composite blankets were manufactured manually, in weight proportions of 1:1 (50:50%); 1:2 (33:67%) and 2:1 (67:33%) (tire scrapes: latex) respectively. Physical, mechanical and thermal properties of the composites were analyzed to obtain data about the viability of using the composite as a thermal insulator. The analyses carried out were based on standards ABNT, ASTM and UL. The maximum temperature obtained for the composite as a thermal insulator was 200ºC, which meets the range of applications that could be used as a thermal insulator in domestic as well as industrial purposes. The experimental results prove that the composite can be used as a thermal insulator on heated or cooled surface

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The State of Rio Grande do Norte, Brazil, possess major deposits of feldspar, clay, kaolin and talc, all raw materials used in the production of porcelainized stoneware tiles. Conversely, state industries manufacture only low added value red ceramics. Porcelainized stoneware tiles is one of the noblest ceramics, depicting low water absorption (typically below of 0,5%), in addition to excellent staining resistance and mechanical strength. The present work aims at investigating the potential of local raw materials for the production of porcelainized stoneware tiles. To that end, these materials were characterized by X-ray fluorescence, X-ray diffraction, particle size analysis, thermal gravimetric analysis and thermal differential analysis. Admixtures containing different compositions were prepared and fired at three temperatures, 1150, 1200 and 1250°C for 30 min. After firing, tests samples were characterized by water absorption tests, linear retraction, dilatometric analysis, apparent porosity, apparent specific mass, flexural strength, and microstructural analysis by XRD and SEM. The results revealed that ceramics with porcelainized stoneware tiles characteristics could be produced from raw materials originated in the State of Rio Grande do Norte

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermal recovery methods, especially steam injection, have been used to produce heavy oils. However, these methods imply that the metallic casing-cement sheath interface is submitted to thermal cycling. As a consequence, cracking may develop due to the thermal expansion mismatch of such materials, which allows the flow of oil and gas through the cement sheath, with environmental and economical consequences. It is therefore important to anticipate interfacial discontinuities that may arise upon Thermal recovery. The present study reports a simple alternative method to measure the shear strength of casing-sheath interfaces using pushthrough geometry, applied to polymer-containing hardened cement slurries. Polyurethane and recycled tire rubber were added to Portland-bases slurries to improve the fracture energy of intrinsically brittle cement. Samples consisting of metallic casing sections surrounded by hardened polymer-cement composites were prepared and mechanically tested. The effect of thermal cycles was investigated to simulate temperature conditions encountered in steam injection recovery. The results showed that the addition of polyurethane significantly improved the shear strength of the casing-sheath interface. The strength values obtained adding 10% BWOC of polyurethane to a Portland-base slurry more than doubled with respect to that of polyurethane-free slurries. Therefore, the use of polyurethane significantly contributes to reduce the damage caused by thermal cycling to cement sheath, improving the safety conditions of oil wells and the recovery of heavy oils

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditional ceramics have an important role in the economy of Rio Grande do Norte. The local industries manufacture over 50 million shingles a month, corresponding to 60% of their overall production. As a result of processing flaws, roughly 20% of the production must be discarded, since little or no use has been envisaged for such fired components. Therefore, the use of this kind of residue, especially in the composition of other ceramic materials, comes as an interesting option from the economical and environmental point of view. In this scenario, the objective of the present study was to assess the effect of the addition of fired shingle waste in the composition of porcelainized stoneware tiles. To that end, two porcelainized stoneware tiles compositions were initially prepared. Subsequently, contents from 10 to 30% of roofing tiles chamote were added to each one of them. All raw materials and grog were characterized by FRX, XRD, and thermal analysis. The ceramics were fired using natural gas for 30 min at different temperatures, i.e. 1150, 1200 and 1250ºC, and fully characterized. The addition of roofing tiles chamote resulted in composition with superior properties compared to additive-free compositions. Porcelainized stoneware tiles products that fulfill required standards for practical applications were achieved

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metal/ceramic interfaces using zirconia have dominated the industrial applications in the last decade, due to the high mechanical strength and fracture toughness of zirconia, especially at temperatures below 300 ºC. Also noteworthy is the good ionic conductivity in high temperatures of this component. In this work joining between ZrO2 Y-TZP and ZrO2 Mg-PSZ with austenitic stainless steel was studied. These joints were brazed at high-vacuum after mechanical metallization with Ti using filler alloys composed by Ag-Cu and Ag-Cu-Ni. The influence of the metallization, and the affinity between the different groups (ceramic / filler alloys) was evaluated, in order to achieve strong metal/ceramic joints. Evaluation of joints and interfaces, also the characterization of base materials was implemented using various techniques, such as: x-ray diffraction, leak test, three-point flexural test and scanning electron microscopy with chemical analysis. The microstructural analysis revealed physical and chemical bonds in the metal/ceramic interfaces, providing superior leak proof joints and stress cracking, in order to a good joint in all brazed samples. Precipitation zones and reaction layers with eutetic characteristics were observed between the steel and the filler metal